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Abstract. We present a method for learning nonlinear systems, echo state networks (ESNs). 
ESNs employ artificial recurrent neural networks in a way that has recently been proposed 
independently as a learning mechanism in biological brains. The learning method is 
computationally efficient and easy to use. On a benchmark task of predicting a chaotic time 
series, accuracy is improved by a factor of 2400 over previous techniques. The potential for 
engineering applications is illustrated by equalizing a communication channel, where the signal 
error rate is improved by two orders of magnitude.  
 
Nonlinear dynamical systems abound in the sciences and in engineering. If one wishes to 
simulate, predict, filter, classify or control such a system, one needs an executable system model. 
However, it is often infeasible to obtain analytical models. In such cases one has to resort to 
blackbox models, which ignore the internal physical mechanisms and instead only reproduce the 
outwardly observable input-output behavior of the target system.  
 
If the target system is linear, efficient methods for blackbox modeling are available. Most 
technical systems however become nonlinear if operated at higher operational points (that is, 
closer to saturation). Although this might lead to cheaper and more energy-efficient designs, it is 
not done because the resulting nonlinearities cannot be harnessed. Many biomechanical systems 
use their full dynamic range (up to saturation) and thereby become leightweight and energy-
efficient – and thoroughly nonlinear.  
 
Here we present an approach to learning blackbox models of nonlinear systems, echo state 
networks (ESNs). An ESN is an artificial recurrent neural network (RNN). RNNs are 
characterized by feedback ("recurrent") loops in their synaptic connection pathways. They can 
maintain an ongoing activation even in the absence of input and thus exhibit dynamic memory. 
Biological neural networks are typically recurrent. Like biological neural networks, an artificial 
RNN can learn to mimick a target system – in principle with arbitrary accuracy (1). Several 
learning algorithms are known (2!4) that incrementelly adapt the synaptic weights of an RNN in 
order to tune it toward the target system. These algorithms have not been widely employed in 
technical applications because of slow convergence and suboptimal solutions (5,6). The ESN 
approach differs from these methods in that a large RNN is used (order of 50 to 1000 neurons, 
previous techniques typically use 5 to 30 neurons) and in that only the synaptic connections from 
the RNN to the output readout neurons are modified by learning (previous techniques tune all 
synaptic connections, Fig. 1). Because there are no cyclic dependencies between the trained 
readout connections, training an ESN becomes a simple linear regression task.  
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Fig. 1. (A) Schema of previous approaches to RNN learning. (B) Schema of ESN 
approach. Solid bold arrows: fixed synaptic connections, dotted arrows: adjustable 
connections. Both approaches aim at minimizing the error d(n) – y(n), where y(n) is the 
network output and d(n) is the "teacher" time series observed from the target system.  
 
 
We illustrate the ESN approach on a task of chaotic time series prediction (7). The Mackey-Glass 
system (8) is a standard benchmark system for time series prediction studies. It generates a subtly 
irregular time series (Fig. 1A). The prediction task has two steps: (i) use an initial teacher 
sequence generated by the original MGS to learn a blackbox model M of the generating system, 
(ii) use M to predict the value of the sequence some steps ahead.  
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Fig. 2. (A) Prediction output of the trained ESN (dotted) overlaid with the correct 
continuation (solid). (B) Learning the MG attractor. Three sample activation traces of 
internal neurons are shown. They "echo" the teacher signal d(n). After training, the 
desired output is re-created from the echo signals through output connections (dotted 
arrows) whose weights wi are the result of the training procedure. 
 
 
First we created a random RNN with 1000 neurons (called the "reservoir") and one output 
neuron. Importantly, the output neuron was equipped with random connections that project back 
into the reservoir (Fig. 2B). A 3000 step teacher sequence d(1),..., d(3000) was generated from 
the MGS equation and fed into the output neuron. This excited the internal neurons through the 
output feedback connections. After an initial transient, they started to exhibit systematic 
individual variations of the teacher sequence (Fig. 2B).  
 
The fact that the internal neurons display systematic variants of the exciting external signal is 
constitutional for ESNs: the internal neurons must work as "echo functions" for the driving 
signal. Not every randomly generated RNN has this property, but it can effectively be built into a 
reservoir (supporting online text).  
 
It is important that the "echo" signals be richly varied. This was ensured by a sparse 
interconnectivity of 1% within the reservoir: this condition lets the reservoir decompose into 
many loosely coupled subsystems, establishing a richly structured reservoir of excitable 
dynamics.  
 
After time n = 3000, output connection weights wi (i = 1, ..., 1000) were computed (dashed 
arrows in Fig. 1B) from the last 2000 steps n = 1001,..., 3000 of the training run such that the 

training error  was minimized [x!! !
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n ii itrain nxwnd " i(n): activation 
of the i-th internal neuron at time n]. This is a simple linear regression.  
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With the new wi in place, the ESN was disconnected from the teacher after step 3000 and left 
running freely. A bidirectional dynamical interplay of the network-generated output signal with 
the internal signals xi(n) unfolded. The output signal y(n) was created from the internal neuron 
activation signals xi(n) through the trained connections wi, by y(n) = . Conversely, 
the internal signals were "echoed" from that output signal through the fixed output feedback 
connections (supporting online text).  
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For testing, a 84-step continuation d(3001),..., d(3084) of the original signal was computed for 
reference. The network output y(3084) was compared with the correct continuation d(3084). 
Averaged over 100 independent trials, an normalized root mean square error 

 was obtained [d! " 2.42/1100
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and network output in trial j, !  variance of MGS signal], improving the best previous 
techniques (9 –15), which used training sequences of length 500 to 10000, by a factor of 700. If 
the prediction run was continued, deviations typically became visible after about 1300 steps (Fig. 
2A). With a refined variant of the learning method (7) the improvement factor rises to 2400. 
Models of similar accuracy were also obtained for other chaotic systems (supporting online text). 
 
The main reason for the jump in modelling accuracy is that ESNs capitalize on a massive short-
term memory. We showed analytically (16) that under certain conditions an ESN of size N may 
be able to "remember" in the order of the last N inputs. This information is more massive than the 
information used in other techniques (supporting online text).  
 
We now illustrate the approach in a task of practical relevance, namely, the equalization of a 
wireless communication channel (7). The essentials of equalization are as follows. A sender 
wants to communicate a symbol sequence s(n). This sequence is first transformed into an analog 
envelope signal d(n), then modulated on a high-frequency carrier signal and transmitted, then 
received and demodulated into an analog signal u(n) which is a corrupted version of d(n). Major 
sources of corruption are (i) noise (thermal or due to interfering signals), (ii) multipath 
propagation, which leads to a superposition of adjacent symbols (intersymbol interference), and 
nonlinear distortion induced by operating the sender's power amplifier in the high gain region. In 
order to avoid the latter, the actual power amplification is run well below the maximum 
amplification possible, thereby incurring a significant loss in energy efficiency which is clearly 
undesirable in cellphone and satellite communications. The corrupted signal u(n) is then passed 
through an equalizing filter whose output y(n) should restore u(n) as closely as possible to d(n). 
Finally, the equalized signal y(n) is converted back into a symbol sequence. The quality measure 
for the entire process is the fraction of incorrect symbols finally obtained (symbol error rate). 
 
In order to compare the performance of an ESN equalizer with standard techniques, we took a 
channel model for a nonlinear wireless transmission system from a study (17) that compared 
three customary nonlinear equalization methods, namely a linear decision feedback equalizer 
(DFE), which is actually a nonlinear method; a Volterra DFE; and a bilinear DFE. The model 
equation featured intersymbol interference across 10 consecutive symbols, a second-order and a 
third-order nonlinear distortion, and additive white Gaussian noise. All methods investigated in 
that study had 47 adjustable parameters and used sequences of 5000 symbols for training. In 
order to make the ESN equalizer comparable with the equalizers studied in (17), we took ESNs 
with a reservoir of 46 neurons (which is small for the ESN approach), which yielded 47 
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adjustable parameters (the 47th comes from a direct connection from the input to the output 
neuron). 
 
We carried out numerous learning trials (7) to obtain ESN equalizers, using an online learning 
method (a version of the recursive least square algorithm known from linear adaptive filters) to 
train the output weights on 5000 step training sequences. We chose an online adaptation scheme 
(17) here because the methods in (17) were online adaptive, too, and because wireless 
communication channels mostly are time-varying, such that an equalizer must adapt to changing 
system characteristics. The entire learning-testing procedure was repeated for signal-to-noise 
ratios ranging from 12 to 32 db. Fig. 3 compares the averge symbol error rates obtained to the 
results reported in (17), showing an improvement of two magnitudes for high signal-to-noise 
ratios. 
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Fig. 3. Using an ESN for nonlinear channel equalization: results. Plot shows signal error 
rate SER vs. signal-to-noise ratio SNR. a. linear DFE, b. Volterra DFE, c. bilinear DFE 
(a – c taken from (18)). d. Blue line represents average ESN performance with randomly 
generated "reservoirs" (error bars: variation across networks). e. Green line indicates 
performance of best network chosen from the networks averaged in d (error bars: 
variation across learning trials).  
 
 
For tasks with multi-channel input and/or output, the ESN approach can be accomodated simply 
by adding more input or output neurons (19,20). 
 
ESNs can be taken to all basic tasks of signal processing and control, including time series 
prediction, inverse modeling, pattern generation, event detection and classification, modeling 
distributions of stochastic processes, filtering and nonlinear control (16,18,19,20). Because a 
single learning run takes only a few seconds (or minutes for very large datasets and networks), 
engineers can test out variants at a high turnover rate, a crucial factor for practical usability.  
 
ESNs have been developed from a mathematical and engineering perspective, but exhibit typical 
features of biological RNNs: a large number of neurons, recurrent pathways, sparse random 
connectivity and local modification of synaptic weights. The idea of using randomly connected 
RNNs to represent and memorize dynamic input in network states has frequently been explored 
in specific contexts, for instance artificial intelligence models of associative memory (21), 
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models of prefrontal cortex function in sensory-motor sequencing tasks (22), models of birdsong 
(23), models of the cerebellum (24) or general computational models of neural oscillators (25). 
Many different learning mechanisms were considered, mostly within the RNN itself. The 
contribution of the ESN is to have elucidated the mathematical properties of large RNNs such 
that they can be used with a linear, trainable readout mechanism for general blackbox modeling. 
An approach essentially equivalent to ESNs, liquid state networks (26,27), has been developed 
independently to model computations in cortical microcircuits. Recent findings in 
neurophysiology suggest that the basic ESN/liquid state network principle seems not uncommon 
in biological networks (28-30) and could eventually be exploited to control prosthetic devices by 
signals collected from a collective of neurons (31). 
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Supporting Online Material  
 
Methods  
 
Network equations  
 
The ESNs described in the article are standard discrete-time sigmoid networks. The state update 
equation is x  [W: matrix of internal 
connection weights; : N-size vector of input connection weights;  (optional): weight 
vector for feedback connections from the output neuron to the reservoir;  (optional): noise 
vector; the tanh is applied elementwise]. The output equation for a single-output network is 

 [ : (N+1)-size vector of weights of connections to the output 
neuron;  contains the w

))()()1()((tanh)1( nnynunn fbin !!!!!"! wwxW

inw

)))(),((( nunout xw outw

out

NN !

fbw
! )n(

tanh)(ny !

w i used in the article text]. The output nonlinearity tanh is optional. In 
the Mackey-Glass experiment it was present, whereas in the channel equalization study we used 
linear output units. In order to make a random reservoir qualify as an echo state network, it must 
exhibit certain damping properties. They can be ascertained by ensuring that the weight matrix W 
has a spectral radius smaller than unity (S1). 
 
 
The Mackey-Glass system 
 
Preparation of training and testing data. The MG delay differential equation 

 [!: delay; here we used ! = 17, the value standardly 
employed in most of the MGS prediction literature] was simulated using the dde23 solver for 
delay differential equations from the commercial toolbox Matlab. This solver allows one to 
specify the absolute accuracy; it was set to 1e-16. A stepsize of 1.0 was used (which is finer than 
the stepsize automatically selected by dde23). The resulting time series were shifted by –1 and 
passed through a tanh function, whereby they fell into a range of (!0.5, 0.3). From all data series 
thus generated, the first 1000 steps were discarded to get rid of initial washouts.  

))(1.0)(1(/)(2.0/ 10 txtxtxdtdx !!"!# !!

 
Network setup. To construct the ESN, a 1000 x 1000 reservoir weight matrix W was generated 
with 1% connectivity and random weights drawn from a uniform distribution over (–1,1), then 
rescaled to spectral radius 0.8. Output feedback connection weights were randomly selected from 
a uniform distribution over (!1,1). An auxiliary input unit was attached with similar random 
connections to feed in a constant bias input of size 0.2.  
 
Training and testing. Length of training sequence was 3000, first 1000 steps were discarded to 
wash out initial transient, echo signals x(n) were sampled from remaining 2000 steps. Noise "(n) 
of size 1.0e-10 was added on network units during sampling, a trick to increase stability of the 
trained network, see comments in (1). The error to be minimized was 

. (The tanh!
!

"

!"

3000

1001
21 ))()((tanh2000/1MSE

n outtrain nnd xw

outw

-1 was left out in the formula given 
in the article because it would have required an explanation of the network equations). The 
weight vector  that minimizes this MSE is made from the regression weights of the linear 
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regression of the tanh-1 d(n) values on the x(n) values. Any method for computing linear 
regressions can be used to obtain . We employed the pseudoinverse routine pinv from 
Matlab. The obtained training error was . For testing, 100 independent 
instantiations of the MGS time series were teacher-forced on the trained network for 2000 steps, 
then the network was left running freely and the network’s continuation was compared to the true 
continuation after 84 steps to obtain an average normalized root mean square error for the 84 step 

prediction of  [d(+84) correct 

continuation, y(+84) network prediction, !  variance of MG signal]. Fig. 2A in the article shows 
an overlay of a 2500 step free running continuation of the trained network with the continuation 
of the original MGS series. 

outw

(( !d

15-E2.1MSE "train

100/))84() 2
!" y !

2

! " 000025.084NRMSE
2/1100

1
2

84 #$ !
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In order to test whether the trained network indeed generates a chaotic time series (as opposed to 
a long limit cycle behavior that might superficially look like a chaotic sequence), the largest 
Lyapunov exponent of the network-generated output signal was empirically estimated. To this 
end, the trained network was first run for 1500 time steps in teacher-forced mode, after which it 
was in state x(1500). From this state, it was left running freely for 317 steps, and the resulting 
output sequence y(1501), ..., y(1817) was recorded. In addition, the state x(1500) was perturbed 
by a uniform noise vector of size 1e!7, and the network was left running freely starting now from 
the perturbed state for 317 steps, and the resulting output sequence y'(1501), ..., y'(1817) was 
recorded. The exponential divergence rate # between these two sequences was estimated by 
computing d1 = ! [y(1601) ... y(1617)] ! [y(1601) ... y(1617)] !, d2 = ! [y(1801) ... y(1817)] ! 
[y(1801) ... y(1817)] !,  # = log(d2/d1) / 200. The subesequence length 17 that goes into the 
computation of d1 and d2 was chosen because it corresponds to roughly one full "loop" of the 
attractor. Averaging over 100 such trials gave an estimated Lyapunov exponent of 0.0058. An 
analog empirical estimate of the Lyapunov exponent of the time series obtained from the dde23 
solver yielded a value of 0.0059. Both values agree with estimates for the MG Lyapunov 
exponent found in the literature, which vary (considerably) around 0.006. Therefore, the network 
indeed generated a chaotic time series with a degree of chaoticity similar to the original system. 
 
 
The ESN equalizer 
 
Data preparation. We took the channel model from (S2). The channel is modeled by a linear 
system with memory length 10 followed by a memoryless noisy nonlinearity. The input to the 
channel is an i.i.d. random sequence d(n) with values from {–3, –1, 1, 3}. The input-output 
equation of the linear channel is given by q(n) = 0.08 d(n + 2) – 0.12 d(n + 1) + d(n) +             
0.18 d(n – 1) – 0.1 d(n – 2) + 0.09 1 d(n – 3) – 0.05 d(n – 4) + 0.04 d(n – 5) + 0.03 d(n – 6) + 
0.01 d(n – 7). The noisy nonlinearity is given by u(n) = q(n) + 0.036 q(n)2 – 0.011 q(n)3 + "(n), 
where "(n) is an i.i.d. Gaussian noise with zero mean adjusted in power to yield signal-to-noise 
ratios ranging from 16 to 32 db.  
 
Network setup. 46-neuron ESN reservoir network weight matrices W were randomly generated 
with a connectivity of 20%, and nonzero connection weights drawn from a uniform distribution 
over (!1, 1). The resulting weight matrix was rescaled to a spectral radius of 0.5. An input neuron 
was attached with connection weights drawn from a uniform distribution over (! 0.025, 0.025). 
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The output neuron was a linear neuron here, so the output equation of the network is 
. ))(),(()( nunny out xw!

 
Input and teacher signals given to the network. The input given to the ESN equalizer was not 
the raw corrupted signal u(n) but a shifted version u(n) + 30. The teacher output signal was       
d(n – 2), so the learning task consisted in minimizing the square error (y(n) – d(n – 2))2. Note that 
this implies a delay in the equalizer response of 4 time steps, because the signal u(n) depends on 
d values up to time n + 2. The equalizers investigated in (S2) had response delays ranging from 8 
to 21. 
 
The online learning algorithm. We used the following plain textbook version of the RLS 
algorithm (S3): 
 
Initialization: Create a diagonal auxiliary matrix $-1(0) of size 47 by 47, with large diagonal 
entries of size 1010. Create an initial all-zero output weight vector  of size 47 and an 
initial all-zero network state x(0). Define a forgetting rate # (we used # = 0.998). 

)0(outw

 
Input into update cycle n: Previous output weight estimates  of size 47; network state 
+ input vector (x(n), u(n) + 30) =: v(n) of size 47; one-dimensional teacher output                     
d(n – 2) =: d

)1( !noutw

+(n); the auxiliary matrix $-1(n – 1). 
 
Output after update cycle n: Network output y(n), update  of output weight vector, 
update of auxiliar matrix $

)(noutw
-1(n). 

 
Computation steps within one update cycle: 
 

1. u(n) = $-1(n – 1) v(n)       [comment: this u is not related to the input u].  

2. k(n) = )(
)()(

1
T n

nn
u

uv!!

     [comment: T indicates transpose] 

3. y(n) = )1( !noutw T v(n) 
4. e(n) = d+(n) – y(n) 
5.  =  + k(n) e(n) )(noutw )1( !noutw
6. $

-1(n) = #-1 ($-1(n – 1) –  k(n) [v(n)T $-1(n – 1)]) 
 
During the first 100 steps of the 5000-step training run, the RLS update was disabled to allow the 
reservoir network to wash out initial transients resulting from the arbitrary starting state. 
 
Learning and testing, suite 1 (curve d in Fig. 3). We carried out 20 independent learning trials 
for each signal-to-noise ratio (SNR) 12, 16, 20, 24, 28, 32. A single learning trial consisted of 
creating a random 46-neuron reservoir and random input connection weights as indicated above, 
setting the noise "(n) to yield a prescribed signal-to-noise ratio, running the RLS algorithm on the 
random network for 5000 update cycles, freezing the weights and letting the trained equalizer run 
on a test sequence. The equalized signal y(n) from the test run was converted into a 4-symbol 
sequence by equidistant thresholding (symbol "1" was chosen if y(n) < 2, "2" if 2 % y(n) < 0, etc.). 
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The test run was stopped after the 10th symbol error was encountered or after 107 steps, 
whichever occurred first. The symbol error rate (SER) was estimated by the quotient number of 
incorrectly re-converted symbols / length of test run.  
 
Learning and testing, suite 2 (curve e in Fig. 3). The reservoir that gave the best performance in 
the SNR = 32 condition in suite 1 was used in all trials of a second suite of learning trials. The 
variance found for each SNR in curve e from Fig. 3 results from differences in the training and 
test sequences.  
 
 
Supporting Material Text 
 
Refined version of the learning method 
 
When the ESN method is used with feedback from the output neuron (as in the Mackey-Glass 
example), the reservoir network is "forced" by the correct teacher output during the presentation 
of the training data. When the trained network is later exploited for generating output 
autonomously, it is receiving its own output signal through the feedback connections instead of 
the correct signal. Because the self-generated output slightly deviates from the correct one, the 
dynamics of the reservoir state will be slightly different in training vs. autonomous signal 
generation. If during training the output neurons could be trained using a reservoir with a 
dynamics closer to the one encountered at exploitation time, modelling accuracy could be 
improved. This idea leads to an improved, three-stage version of the training method, which will 
now be described for the Mackey-Glass prediction task: 
 
1. First stage: an ESN is trained on the Mackey-Glass prediction task exactly as in the basic 

method, with a teacher time series d(n) obtained from a numerical simulation of the MG 
equation. This results in a preliminary set of output weights . 0

outw
2. Second stage: A new teacher time series d'(n) is computed from d(n) and the weights , as 

follows. Put d'(1) = d(1). In order to compute d'(n) for n > 1, start network in random state 
x(1). To obtain d'(2), write d(1) into the output neuron and update the network once according 
to x  and . Put d'(2) = y(2). Iterate: to 
obtain d'(n), write d(n!1) into the output neuron, update according to 

 and , put d'(n) = y(n). Thus, d'(n) 
is the sequence of one-step predictions of the network trained in the first stage (except for 
d'(1)).  

0
outw

))1()1((tanh)2( dfbwxW !"

()1((tanh) !"!# ndnn fbwxW

)))2(((tanh)2( 0 xwouty !

(((tanh)( 0 nny out xw!))1(x )))

3. Third stage: Use d'(n) as a new teacher signal and retrain the ESN with d'(n) instead of d(n), 
obtaining the final set of output weights . 1

outw
 
Because d'(n) incorporates some effects of the autonomous network update dynamics, using it as 
a teacher in stage 3 brings the network dynamics closer to the autonomous network dynamics in 
exploitation runs, and thereby yields an altogether more accurate model.  
 
The generation of a synthetic training sequence d'(n) from d(n) can be iterated by generating 
d''(n) from d'(n) and  as d'(n) was generated from d(n) and , etc. However, further such 1

outw 0
outw
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"relaxation stages" beyond d'(n) did not result in further improvements of model accurary in the 
Mackey-Glass task (but sometimes did in other chaotic time series prediction tasks not reported 
here).  
 
When the basic learning method is used to train chaotic attractor predictors, adding noise during 
sampling time is often helpful to obtain stable network dynamics. This was found to be 
unnecessary in the refined version of the method.   
 
The improvements afforded by this re-training method can further be enhanced by a standard 
trick of machine learning: averaging over different models. We demonstrate this on the MGS 
prediction task (delay 17). Twenty ESN reservoirs of 1000 units each were randomly created, 
with the same scaling parameters as reported for the basic version. A 3000 step teacher sequence 
d(n) was computed from the MG equations as described in the methods section. For each of the 
20 ESNs, the three-stage refined version of the learning method was carried out independently 
using d(n), yielding 20 sets of output weights. As in the basic method, network state data from an 
initial washout period of 1000 steps were discarded from computing the linear regression of the 
output weights in stages 1 and 3.  
 
For exploitation, the 20 ESN models were combined through averaging their output. Concretely, 
in each update step n, the 20 networks were updated independently. Their averaged output was 
fed back into each of the networks. The sequence of averaged outputs was considered as the total 
model output. The NRMSE84 was computed as described above. This entire procedure was 
repeated 10 times, yielding 10 values of NRMSE84, each corresponding to a model of 20 
combined 1000-neuron ESNs. The average of the log10's of the 10 NRMSE84's was –5.09 (stddev 
0.25). Compared to the previously achievable accuracy for this prediction task of 
log10(NRMSE84) = –1.7, this is an improvement of about 3.4 orders of magnitude, or a factor of 
2450. Fig. S1 illustrates the prediction error development on long prediction runs. 
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Figure S1: (A) Prediction of the MG (delay 17) attractor using the refined ESN method. 
Blue: correct continuation, green: network prediction. (B) Log10 of absolute prediction 
error. Blue: basic method (averaged over 10 networks, 10 predictions each). Red: 
refined method (one 20-network model, averaged over 20 predictions). Green lines 
indicate the divergence rate of the original system, that is, the function exp(#1), where #1 
is the largest Lyapunov exponent of the MG system. The x-axis shows network updates 
(= MG time units) in both plots.  
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The echo state property 
 
Intuitively, a RNN which is driven by an external signal u(n) has the echo state property if the 
activations xi(n) of the RNN neurons are systematic variations of the driver signal u(n). More 
formally, this means that for each internal unit xi there exists an "echo function" ei, such that, if 
the network has been run for an idefinitely long time in the past, the current state can be written 
as xi(n) = ei (u(n), u(n&!1), u(n&!2), ...). We gave several nontrivial alternative definitions of this 
condition and algebraic characterizations of which network weight matrices W!lead to networks 
having the echo state property (S1). For practical purposes it suffices to fix the spectral radius of 
W below unity to ensure the echo state property. 
 
The echo state property is crucial for making the ESN learning method work. Consider some 
target system of the NMA type (= Nonlinear Moving Average). The current output d(n) of an 
NMA system is a function of the input history, that is, d(n)  = f(u(n), u(n&!1), u(n&!2),...). Due to 
the echo state property, the ESN learning approach boils down to approximate the nonlinear 
system function f by a linear combination of the echo functions, where the linear combination 
weights are the trained output connection weights: . Written out, this becomes 

. The equalizer system considered in the 
article is of type NMA.  

!! i iiewf

),...)1(),((),...)1(),(()( !"!# ! nunuewnunufnd
i ii

 
There are two other major classes of nonlinear dynamical systems, NAR ("Nonlinear Auto-
Regressive") and NARMA ("Nonlinear Auto-Regressive Moving Average") systems. NAR 
systems have system functions of the kind d(n)  = f(d(n&!1), d(n&!2),...) and NARMA systems of 
the kind d(n)  = f(u(n), u(n&!1), u(n&!2),... , d(n&!1), d(n&!2),...). The Mackey-Glass attractor is a 
NAR system. In NAR systems, the next system output is determined by previous output values. 
This was effected in the MGS study reported in the article through the output feedback 
connections. In such systems, the teacher output d(n) is approximated through the echo functions 
by . The article contained no 
NARMA example, which however can be learnt in a similar way through ENSs featuring both 
input neurons and output feedback connections, through 

. 

),...)2(),1((),...)2(),1(()( !!"!!# ! ndndewndndfnd
i ii

(),((),...)2(),1(),...,1(),(() !"""# ! unuewndndnunufn
i ii ),...)2(),1(),...,1( """ ndndnd

 
Comparison with previous approaches to MGS prediction  
 
The MGS system with delay parameter ! = 17 is a standard benchmark system in research on 
time series prediction. Almost every available technique for nonlinear system modelling and 
prediction has been tested on the MGS system. Virtually all previous techniques (except a few 
which used other versions of RNNs) rely on Takens' theorem (S4). This theorem implies that a 
chaotic system observed in one variable y(n) can in principle be perfectly predicted from a few 
previous support points, that is, the next value y(n+1) is determined by a few previous output 
values y(n), y(n – l),  y(n – 2l), ..., y(n – kl), where l is the distance between support points and k 
is related to the embedding dimension. Typical values used for k for the MGS are 7 – 10, (7 is the 
theoretical minimum required). The values taken for l depend on the sampling frequency of the 
MGS signal. Using this basic approach, the prediction task boils down to estimate from training 
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data a prediction function f which produces the next value from the support values by y(n+1) = 
f(y(n), y(n – l), ..., y(n – kl)). Methods differ in the mathematical representation of f, which may 
be expressed for instance by methods of fuzzy splines, feedforward neural networks, radial basis 
function networks, Volterra expansions, bilinear expansions, support vector machines, or 
weighted combinations of previously observed subsequences in the training data ("direct 
methods"). If carried out with care, these approaches invariably yield NRMSE prediction errors 
for the 84-step prediction in the range of 10!1.2 to 10!1.7 (S5-S11). In contrast, ESNs do not try to 
estimate such a prediction function and thus do not ultimately rely on Takens' theorem. The much 
better precision achieved with ESNs suggest that it is the reliance on Takens' theorem which 
limited the precision of previous approaches. Specifically, the inevitable numerical inaccuracy 
entailed by rounding errors implies that the information about the current MGS system state 
contained in the few support points of traditional techniques is poorer than the massive 
information that is retained in an ESN "echo" network state about a long previous history (S12).  
 
 
Applying the ESN method to predicting other chaotic attractors 
 
The Lorenz attractor  
 
The Lorenz attractor is governed by the three-dimensional ordinary differential equation  
dx/dt = p(y – x), dy/dt = –xz + rx – y, dz/dt = xy – bz. We used Lorenz' original parameters p = 10, 
r = 28, and b = 8/3, for which one obtains a chaotic attractor with a largest Lyapunov exponent of 
#1 Lorenz ' 0.906, which thus exhibits a much stronger chaoticity than the Mackey-Glass system. 
Training and testing date were prepared by solving the Lorenz equation with the Runge-Kutta 
(4,5) method, stepsize 0.02 (employing Matlab's ode45 solver). The stepsize 0.02 was also taken 
for the ESN update interval, thus one network update covers 0.02 units of original Lorenz time. 
Following most other learning studies of this attractor, we used only the x-coordinate trajectory 
for training and testing. The x-coordinate time series thus obtained from the Lorenz equation 
were rescaled by a factor of 0.01 to obtain series x'(n) to be used for training and testing. 
 
We compared the basic training method, as described in the main text, with the refined method 
outlined in the SOM.  
 
For one training-test run of the original method, a single network of 500 units was created 
(spectral radius 0.97, connectivity 1/50, input connection weights sampled from uniform 
distribution over (–1, 1), output feedback connection weights sampled from uniform distribution 
over (–4,4). It was trained on 6000 update steps on x'(n), with uniform noise sampled from         
(–1e-8, 1e-8) added to states during updates. Data from the first 1000 updates were discarded. 
The trained network was tested on 20 independent prediction tasks, each consisting of first 
running the network through 1000 teacher-forced updates and then letting it run freely to predict 
the next 600 steps. All error computations were done with data scaled back to the original Lorenz 
scale. 84-step prediction errors NRMSE84 were obtained from the 20 prediction tasks and taken 
to log10. This train-test procedure was repeated for 10 independently created networks on 
independently created data. The log10 NRMSE84 had an average of –2.33 (stddev 0.54 accross the 
10 networks). Fig. S2B shows the average absolute error development. 
 

 14



For the refined method, 20 randomly created networks of 500 units each were trained on 6000 
sample points with one relaxation stage. Network scaling parameters were the same as in the 
basic method. No noise was added to states during sampling. Data from the first 1000 cycles 
were discarded. The resulting 20-network model was tested by running it through 20 prediction 
tasks on independent test data. Each prediction task was carried out by first running the model in 
teacher-forced mode through an initial washout period of 1000 steps and then letting it run freely 
to predict the continuation for another 600 steps. For the 84-step prediction, an error of log10 
NRMSE84 = !4.27 was obtained, about two orders of magnitude better than with the basic 
method. Fig. S2A shows a typical prediction, and Fig. S2B shows the average absolute error 
development on the 600 steps. The prediction reaches its maximal deviation from the correct 
continuation after about 600 network updates, corresponding to 12 Lorenz time units.  
  
The accuracy relative to the degree of chaos is quite similar to the accuracy seen in the (refined) 
Mackey-Glass prediction: noticing that the Mackey-Glass predictions reach their maximum 
average departure from the correct continuation after about 1700 time units (see Fig. S1) we find 
12 Lorenz time units * #1 Lorenz = 10.9 ' 10.2 = 1700 MG time units * #1 MackeyGlass. 
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Figure S2: (A) Prediction of the Lorenz attractor using the refined ESN method. The first 
coordinate of the attractor is shown. Blue: correct continuation, green: network 
prediction. (B) Log10 of absolute prediction error. Blue: basic method (averaged over 10 
networks, 20 predictions each), red: refined method. The x-axis shows network updates 
in both plots. Divide by 50 to obtain Lorenz timescale. 
 
A conspicuous feature in Fig. S2B is the initial sharp error rise in the first 40-50 network updates. 
This results from the fact that the network was teacher-forced by the correct signal before the 
free-running prediction starts. When the network is decoupled from the forcing teacher at update 
step 1, it relaxes from a forced mode into its autonomous dynamics, where it settles after about 
40-50 updates. A similar relaxation with an initial error rise can be seen in Fig. S1B, although it 
is less pronounced there.   
 
The Lorenz attractor has been used often to demonstrate time series prediction methods. 
Unfortunately, prediction studies using the Lorenz attractor vary in important characteristics 
(number of training points, sampling rates, prediction horizons, error criteria, dimensions used for 
training), which makes a comparison difficult. The best Lorenz prediction study (S13) known to 
the authors manage to keep track of the Lorenz time series through 4 "switches" of the attractor 
from one lobe to the next, while our ESN model (refined version) stays with the true continuation 
for 5-11 such switches (mean 7.0 on 20 visually inspected predictions, stddev 1.6). Considering 
the fact that roughly such switching events occur after 2 Lorenz time units on average, in order to 
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stay with the correct continuation for one more such switch one needs an additional accuracy 
factor of exp(()#1 Lorenz) ' 6. A prediction method A that stays with the correct continuation for 3 
more lobe switches than another prediction method B would therefore have to be about 63 ' 1e2.2 
times more accurate (in terms of absolute distance between predicted and correct trajectories).  
 
 
The Mackey-Glass attractor with delay 30 
 
Besides the MG attractor with a delay of 17, the other widely investigated version of the MG 
attractor is defined by putting the delay to 30. This attractor still is only mildly chaotic (#max ' 
0.007), but the resulting time series is phenomenologically much richer than for * = 17 and 
therefore more difficult to learn. We applied the basic and the refined version of ESN training to 
this task. 
 
Training and testing data were prepared by simulating the attractor with a stepsize of 1.0, using 
the dde23 solver of Matlab with absolute accuracy set to 1e-16. The resulting time series were 
subsampled by 6, such that one increment in the resulting time series d(n) corresponds to 6 time 
units of the original MG equation, a common setting in MG modeling studies. These data d(n) 
were brought into a range suitable for training by putting d'(n) = (0.3 * tanh(d(n) – 1)) + 0.2.   
 
For testing the basic learning method, we created 10 random ESNs (500 neurons each, 
connectivity 1/50, spectral radius 0.9) with a single input and a single output neuron. Input 
connection weights were sampled from a uniform distribution over (–0.2, 0.2), and output 
feedback weights from a uniform distribution over (–1, 1). The networks were individually 
trained with the basic method on a 3000-step sequence d'(n) with a constant "bias" input of size 
1.0. While the network was driven by the teacher data, uniform noise "(n) sampled from            
(–0.0008, 0.0008) was added on the network states. Data from the first 1000 steps were discarded 
before computing the output weights. Figure S3B shows the average absolute prediction error for 
predictions lasting 150 network updates. For all test error computations, the network outputs were 
first retransformed back to the original MG scaling and compared with the originally scaled MG 
signals d(n).  
 
For testing the refined method, ten independently created ESNs (700 neurons each, one input 
neuron, one output neuron, spectral radius 0.85, connectivity 1/70) were employed in the refined 
learning method. Input and output feedback connection weights were randomly assigned like in 
the basic method. The model was trained by teacher-forcing it through 3000 data points, of which 
the first 1000 were discarded before computing the regression of the output weights on the 
network states. Figure S3B shows the average absolute prediction error on independent test data. 
A typical prediction is shown in Fig. S3A. Both graphics demonstrate that the model loses track 
of the original after about 120 iterations, corresponding to 720 MG time units.   
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Figure S3: (A) A sample prediction with the refined ESN model. Blue: true continuation, 
green: model prediction. (B) Average absolute prediction error of ESN models for 
iterated prediction. For the basic method, the average is taken over 10 networks and 20 
predictions each, for the refined method over 50 predictions of a single model made 
from 10 combined ESNs. x-axis corresponds to network updates in both plots. Multiply 
by 6 to obtain MG time units.  
 
From a perspective of nonlinear dynamics, the delay = 30 case of the MG attractor is more 
difficult to model than the delay = 17 case not because of different degrees of chaos (they are 
almost the same) but because of a higher embedding dimension of the delay-30 attractor (S14), 
namely, 4 vs 3. Intuitively this means that the trajectory of the delay-30 attractor "lives" in a      
4-dimensional space, as opposed to a 3-dimensional space for the delay-17 case. This has 
dramatic effects on learnability: if training information from 2000 points is dispersed in a 4-
dimensional space as opposed to a 3-dimensional space, it covers state space volume much more 
sparsely. In order to obtain the same covering density as in the delay-17 case, 20004/3 ' 25,000 
training points would have been needed to ensure a similar model precision. In addition, the 
geometrical shape of the delay-30 attractor is much more involved than the delay-17 attractor 
(not discussed here; intuitively, it is much more "curly"), which again would require a relatively 
higher density of training points to obtain a similar model precision as in the delay-17 case. Both 
effects taken together render the delay-30 MG attractor a formidable modeling task.  
 
The best approach to modeling this attractor we are aware of (S15) obtains a root mean square 
error for a prediction of 120 MG time units of 0.04, which corresponds to a log10 NRMSE120 of  
–0.15. Our corresponding figures for the log10 NRMSE120 are –0.84 on average for the single 
nets trained with the basic method (stddev over the individual 10 networks' log10 NRMSE120: 
0.083) and –1.42 for the refined method.  
 
 
The Laser time series 
 
One of the time series used in the 1994 time series prediction competition (S16) organized by the 
Santa Fe Institute was an empirical time series obtained from measuring a pulsing laser. This data 
set has been tackled with virtually every time series prediction method available. Figure S4A 
shows the data as they were published for the competition; the task was to predict the next 100 
steps.  
 
Using the refined method, we trained a collective of 20 ESNs with 300 neurons each on the 
original data set. The 200-step prediction obtained is shown in Fig. S4B. This prediction matches 
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the first high spikes very well, accurately catches the breakdown event, but is out of phase in the 
ensuing buildup of the oscillation. Very similar outcomes have been observed by a number of 
other researchers; no-one could catch the phase in the final buildup section correctly. The reasons 
for this have been elucidated (S17), as follows. The training dataset contains exactly one instance 
of a breakdown event like the one in the prediction interval (red box in Fig. S4A). The antecedent 
oscillations of this event in the training data match the oscillations right at the end of the training 
data and the first few steps into the prediction interval extremely closely. Figure S4C shows an 
overlay of the event in the training data with the event of the true continuation to illustrate this 
finding. Assuming that the physical laser is a deterministic system, the best prediction is therefore 
just to replicate the continuation from the similar section in the training data. This is what the 
ESN model does, as illustrated in Fig. S4D. Thus, the ESN model has "found out" that it faces 
essentially a pattern matching problem.  

A

DC

B

 
 
Figure S4: Predicting the Laser time series. (A) Training data. (B) ESN prediction 
(green) vs. true continuation (blue) after time 1000. (C) Situation in training data (green) 
[= data from red box in A] vs. true continuation (blue) after time 1000. (D) Situation in 
training data [= data from red box in A] (blue) vs. ESN prediction (green) after time 1000. 
 
This problem exhibits specific difficulties not present in the other examples. First, the original 
data carry substantial numerical roundoff noise (they are measured with 8 bit precision), which 
has prompted most researchers to preprocess the dataset by interpolation/smoothing. We used the 
raw data. Second, the time series has two very different timescales: a fast oscillation and a slow 
buildup-breakdown cycle. Third, the breakdown event that has to be predicted occurs only once 
in the training data. All of these difficulties are not serious if one treats the problem as a pattern 
matching task right away and solves it by detecting the fact that the immediate antecedent of the 
prediction interval occurs already earlier in the training data, and re-using the original 
continuation. This is what many successful solutions do. However, if this valuable insight is not 
made or not used, the three difficulties become formidable. From a machine learning perspective, 
especially the third difficulty is noteworthy: we face here an instance of the "single shot learning" 
problem, that is, a model has to capture some phenomenon from a single presentation during 
training.  
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