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Abstract

A method is presented for immunizing an Echo State Network against
slow, task-irrelevant variation in its input. The main idea is to extract some
principal components of the smoothed reservoir dynamics, and augment the
reservoir with a feedback controller which attempts to pull these components
to zero. This leads to a “homeostatic” self-stabilization of the reservoir dy-
namics. A proof-of-principle case study is presented where the network has
to predict a two-mode input signal which is subjected to a large-amplitude,
slow variation in offset. With the controller in place, this task is solved
with exactly the same quality as in a condition where the input is undis-
torted. Furthermore, the action of the controller can be “compiled into” the
reservoir, by recomputing reservoir weights such that the controlled network
dynamics is recovered without the controller switched on. One thus finally
obtains a reservoir whose internal dynamics are largely invariant against
slow distortion in the input.

1 Introduction

Many signal processing, control, and temporal pattern recognition tasks are con-
fronted with input data showing distorting variation on long timescales, where
the variation is a disturbance for the processing task at hand. Here are some
illustrative examples:
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e A speech-to-text recognition system has to cope with speaker variation which
becomes manifest in different pitch, speed or accent.

e A handwriting recognizer has to be robust against different slants, character
widths, or sizes.

e A humanoid robot walking controller has to adapt to different ground slopes.

The unifying characteristic of these examples is that the distortion changes
on a slower timescale than the natural timescale(s) of the processing task. For
instance, in speech recognition the natural processing timescales are those of
phonemes, words and phrases, while different speakers will take turns using the
system at a lower rate; likewise, ground slope typically changes on longer scales
than steplength.

In this report I present an unsupervised learning method whereby a generi-
cally trainable recurrent neural network (RNN) can learn to immunize itself, by
an active self-regulation mechanism, against slow variations in the input character-
istics. More concretely, I propose an architecture with the following components
and mechanisms:

e The core component is a discrete-time RNN of the “Echo State Network”
(ESN) type [II, 2], destined to be trained in a supervised fashion on some
“payload” task (prediction, classification, control or other).

e Following the rationale of reservoir computing, of which ESNs are an instan-
tiation, the input signal drives the RNN (called “reservoir” in this context).
The reservoir is not modified by training. Only passive readout mechanisms
are trained which combine the payload output signal from the input-excited
signals within the reservoir.

e Training data is provided which exhibits distracting slow variation.

e This slow variation is reflected in equally slow, systematic variation of the
excited response signals within the reservoir. A bank of randomly created,
slow-timescale observers monitors the reservoir signals, yielding a collection
of slow observables o; of the reservoir dynamics. The first few principal
components of these o; are computed, yielding a small selection p; of like-
wise slow, derived observables of the reservoir dynamics. Being the leading
principal components, they account for most of the slow variation in the
reservoir.

e A second module added to this picture is a feedback controller C' which can
modify the ongoing, input-driven dynamics of the reservoir by inserting a
control input ¢(n) into the reservoir. The controller is designed (and trained)
such that it can act as a tracking controller for the slow observables p;.



e After this controller has been installed and trained, the payload task is
trained in a supervised way by computing readouts from the reservoir, in
the usual fashion of reservoir computing. Importantly, while this payload
training takes place, the controller is active. It receives zero targets for
the slow observables p; and thus attempts to cancel the reflections of slow
variation in the input from the reservoir dynamics.

e [f this would work to perfection, the reservoir dynamics with the controller
switched on should be identical to reservoir dynamics obtained from driv-
ing input which has no distracting, slow variation, greatly facilitating the
payload task learning.

e In exploitation, the controller is likewise switched on. Again, if everything
works to perfection, this means that the reservoir response to the driving
input is invariant to the slow variations in the input, yielding a payload
output of a quality equivalent to situations when the input has no slow
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Figure 1: Overview of architecture. For explanation see text.
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2 Model and demo example

The proposed strategy for reservoir self-control against slow variances in the input
proceeds in two stages. In the first stage, a controller C' is trained, in an unsu-
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pervised way, to suppress some leading PCs of slow components in the reservoir
dynamics. In the second stage, with the controller in place and activated, the sys-
tem is trained on some payload task. Throughout this techreport, we will consider
a single demo example with scalar input and scalar output. Before we embark on
the subject of self-control, we inspect the behavior of the native system without
self-control.

2.1 The native system and its payload task performance

I consider a standard ESN with N reservoir units receiving scalar input u(n) and
generating scalar output y(n):

x(n+1) = tanh (Wx(n) + W"u(n)), (1)
y(n) = Wx(n), (2)

where W is the reservoir weight matrix (size N x N), W is the input weight
matrix (size 1 x N), and W is the output weight matrix (size N x1). Concretely,
for our demo I chose N = 50, constructed W to have a connectivity of about 30%,
scaled it to a spectral radius of 0.5, and sampled the input weights from a uniform
distribution in [—0.5,0.5]. These are ad-hoc settings. Throughout this report I
assume that the reader is familiar with the basic concepts of reservoir computing,
and I will not detail out standard procedures from that field.

In our demo example, the input signal is made from two randomly alternating
generators, the first being a binary one-step oscillation and the second a binary
two-step oscillation. A switch from one mode to the other was done with a prob-
ability of 0.02 per time step. Optionally, the input can be modulated by a shift
which slowly oscillates with a period of 1000 time steps and an amplitude of 12.
I will use notation u(n) for the unmodulated and @(n) for the modulated input.
Figure [2| illustrates the input signal.
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Figure 2: Input signal used in demo example. (a): closeup on unmodulated input.
(b) 1000 step sequence of unmodulated (top) and shift-modulated (bottom) input.

The payload task which I consider is simple: predict the input by one time step.
That is, the teacher signal is d(n) = u(n—1). For obtaining a baseline performance,
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the reservoir was driven with an unmodulated input for 6000 time steps, and
output weights were computed from the harvested reservoir states (dismissing the
first 1000 ones to account for initial state washout) by ridge regression with a
regularization constant o = 0.2. This resulted in a normalized mean square test
error (NRMSE) of 0.33, with a mean absolute output weight size of 1.8. When the
training was repeated using the shift-modulated input, an NRMSE of 0.75 with
mean absolute output weights of 2.8 were obtained. Note that the task still was
to predict the unmodulated input. Figure |3|illustrates the outputs generated from
the trained network.
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Figure 3: Baseline performance of un-controlled, native reservoir system. (a) using
unmodulated input, (b) using modulated input. Top: input. Second panels from
above: four traces of reservoir unit activations. Third panel: teacher vs. trained
network output. Last panel: closeup of third panel.

It becomes clear from the NRMSEs and an inspection of Figure |3| that the
payload task training is severely impaired by the shift modulation of the input.
Two apparent mechanisms for this impairment are that, first, the input modulation
introduces a task-irrelevant source of variation into the reservoir dynamics which
the linear regression of the readout training has to compensate; and that, second,
the high input amplitudes incurred by the shift modulation drives many reservoir
units close to saturation for some periods of time and reducues the task-relevant
variation of reservoir unit activations in these intervals.

2.2 Training and testing the controller
We first add smoothed state observers o(n) to the picture:

o(n+1) =0.98-0(n) +0.02 - x(n + 1). (3)

The smoothing constant 0.02 is chosen such that the resulting slow signal
smoothes out most of the fast, input-related oscillations of the state signal, but
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is fast enough to track the slow sinewave of the input shift modulation. After
running the reservoir with modulated input, normalized versions P of the leading
four PCs of the obtained smooted state signal o(n) were computed as follows.

1. Center the o(n) to zero mean in each component, by subtracting their tem-
poral means p, giving o(n) = o(n) — u. Let O = [0(1)---0o(M)] (after
discarding initial washout data).

2. Compute the singular value decomposition (SVD) of the correlation matrix
C' = 00O, where ' denotes transpose, getting [U S V| = svd(C).

3. Let U(:;,1 : 4) denote the first four columns of U (we will be using this
Matlab notation from now on without further explanation). Obtain the first
four PCs of the centered slow observables O by Py, = U(;,1 : 4) O. P,
contains the first four PCs in its four rows.

4. Normalize the rows of Py to unit variance, obtaining P = diag(c~2) Py,
where o is the vector of standard deviations of the rows of Fy. Since the
source signals 6(n) had zero mean, the PCs in P have zero mean too.

We opted for using the first four PCs on the grounds of manual experimenta-
tion. The optimal number of leading PCs to be selected will depend on the case
at hand. Figure [4] gives an impression of the signals involved in this process.

Notice that the PC signals in P can be obtained by an affine transformation
P(n) = diag(c™2)U(:,1 : 4) (o(n) — ), enabling a simple online generation of
them.

Our next goal is to create a simple linear proportional feedback controller
whose purpose is to bring the P(n) = (pi1---ps)’ to zero. 1 want to find four
control vectors cy, ..., c4 of size N such that the controlled reservoir dynamics

x(n + 1) = tanh <Wx(n) + W™y(n) — Z%pi(n)ci> , (4)

exhibits zero (or more realistically, low-amplitude) P(n). Here 7; are control gains,
and —p;(n) is the error signal (with respect to a zero target).

[ set the control vector c; to the vector of correlations of p;(n) with the centered
raw state signals x(n). In detail, using notation E[-] for expectation, let x(n) =
x(n) — E[x(n)]. Then, put

ci = Elpi(n) x(n)]. (5)

A numerical estimate of ¢; can be obtained from the harvested reservoir state
and P data of a trial run of the input-driven system by any standard offline or
online estimation method for correlations. In our demo, I ran the system for 5000



some raw smoothed states

0
-1 A
four leading PCs
4 :
i A
0 ——"
-2
these PCs normalized
2
0 L
_2 .
0 500 1000

Figure 4: Illustrating the principal components of the smoothed reservoir unit
activation signals. Top: a choice of some components of o(n). Center: the four
leading PCs of all 50 such signals. Their energy quickly falls off: the first four
singular values in S are 1.3, 0.068, 0.0026, 0.0002 (x 1.0e4+04). Bottom: same,
normalized to unit variance.



time steps, discarded the first 1000 steps for washout, and estimated c; from the
remaining 4000 sample points by

{pi(n) (x(n) = (x(n)))),

where (-) denotes the mean operator.

Figure |5 shows the four control vectors thus obtained. Note that by construc-
tion, these vectors are pairwise orthogonal. From Figure [5| it is also apparent
that as the index ¢ grows, the norm of the control vector c¢; shrinks. This reflects
the fact that the un-normed PCs F, capture the principal directions of variation
in the (smoothed) reservoir state signals; thus the sqared norms of the control
vectors should be roughly proportional to the corresponding singular values in
S (only roughly because we compute the control vectors by correlation with the
unsmoothed states).
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Figure 5: The four control vectors c; of our demo example.
The rationale behind this construction of control vectors is simple:

e The control objective is to suppress the amplitude of the p;(n).

e The p;(n) are smoothed variations of reservoir states in certain principal
directions of state space.

e Each c; reflects in its jth component the contribution of z;(n) to this
smoothed variation.

e With the control law , these contributions are directly cancelled.

Figure [6] shows the behavior of the reservoir, and the measured amplitudes of
the four p;, when the control is enabled. The driving input was shift-modulated as
in Figure (bottom). By coarse manual experimentation, control gains 7y, = 75 =
v3 = 80, 74 = 160 were found to work well enough for demonstration purposes.
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Figure 6: Comparing the controlled with the uncontrolled reservoir. Top: some
reservoir state traces in uncontrolled condition (repeated from Figure [3b). Cen-
ter: same states traced in controlled condition. Bottom: online measured p; in
controlled and uncontrolled conditions.

An inspection of Figure [6] shows that the control functions to a large extent,
although not to perfection. In order to quantify the control efficiency, I calculated
the mean energy M E (i.e. squared amplitudes) of the four p; in the controlled
and uncontrolled conditions. The damping ratios M Ey,controtied/ M Eecontrolied Were
found to be 489, 174, 205, and 11.

Finally, I used the reservoir states from the controlled run to compute new
output weights for the payload task, using the same regularization constant as
used for the native system (compare Section . Figure |f| is the analog of the
two lowest panels in Figure

An NRMSE of 0.33 was obtained, the same as for the uncontrolled reservoir
driven by unmodulated input. The payload performance is virtually identical to
that undistorted case.

3 Internalizing the control

The control loop adds significant reservoir-external computational machinery to
the core ESN. I will now show how its functionality can be “compiled into” the
reservoir dynamics proper, by recomputing the reservoir weights W and input
weights W, obtaining new such weights Weq,WZ!”. When the network is re-
run with these new weights, and the control loop removed, it will perform almost
identically as with the old weights and the control being activated. I will call the
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Figure 7: The payload task performance of the controlled reservoir. Analog of two
bottom panels in Figure

process of obtaining W, WQZ from W, W the equilibration of the reservoir.
The idea behind equilibration is simple. Let x(n) be the reservoir state signal
obtained from a run where the input was distorted and the control switched on,
i.e. using @ Then, recompute the input and internal weights such that they
optimally reproduce x(n+ 1) from u(n+1) and x(n) in a least mean square sense:

W, Wi =

eqs

arg ming yym E {(tanh_l(x(n +1)) — (Wx(n) + Wmu(n + 1))1 . (6)

I computed a solution to this LMS problem with ridge regression (using a
regularization constant o = 0.2), based on state and input data from a 5000
step run with distorted input and the controller activated. The new weights were
inserted into the reservoir system, and it was re-run with distorted input, without
the control loop — that is, the update equation

x(n + 1) = tanh (Wegx(n) + Wiu(n)) (7)

was used.

Figure[§|shows that the resulting (uncontrolled!) reservoir dynamics is virtually
identical to the dynamics obtained in the controlled condition (using distorted
input in both simulations).

Not surprisingly, when the payload task output weights were recalculated from
the equilibrated network dynamics, the task performance yielded an all but iden-
tical NRMSE — to be precise, it was now 0.331 as compared to 0.332 for the
controlled network, and 0.333 for the native network on undistorted input.
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Figure 8: Comparing reservoir dynamics in the controlled vs. equilibrated condi-

tions;

(a): some internal reservoir state traces, (b): the four slow measured p;.

Left upper panel is repeated from Figure [6]
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Discussion

The core ideas of the approach outlined in this report can be summarized as
follows:

It often occurs in signal processing applications that the input is subject to
variation on a timescale that is slower than the natural timescale(s) of the
“payload” processing task.

When the processing is done by an Echo State Network, the slow variation
in the input will induce slow variations in the reservoir dynamics.

A natural way to monitor this slow reservoir variation is by measuring some
leading principal components p; of the smoothed reservoir state signals.

If one could somehow suppress these PCs, one may hope that the reservoir
dynamics becomes invariant (to a certain degree) against the slow variation
in the driving input, with obvious benefits for training the payload output
in the usual reservoir computing fashion.

One straightforward approach to cancel these PCs is by adding compensat-
ing components c; to the network states, where these compensating c; are
scaled with the current amplitude of the to-be-suppressed p;. This leads to
a proportional controller that self-controls the reservoir dynamics.

A working solution to determine such compensating c; is to set them to the
correlation coefficients of the p; with the reservoir states.

The controlled network’s dynamics now exhibits important invariances against
input distortion. A payload task trained on the controlled network, using
distorted input, is solved with equal quality as the same task trained on the
native network, tested with undistorted input.
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e By a final twist, the controller’s action on the reservoir states can be “in-
ternalized”, or “compiled into” the reservoir, leading to new network weight
parameters. These engender a network dynamics which is virtually identical
to the controlled network’s, but without the controller acting.

The “training” of the controller boils down to estimating the principal compo-
nents p; of the smoothed reservoir states. This is an unsupervised learning task.
I solved it here by the canonical offline estimation of PCs from smoothed state
signals harvested in a trial run. It could likewise be effected by online adaptive
methods for PC estimation.

I would like to point out the natural connection of this approach with the idea of
homeostasis. In a nutshell, one could say (or hope), that a neural signal processing
module can immunize itself against slow variation in the input by entertaining a
“homeostatic” control of its internal dynamics.

An intriguing aspect of the approach is that it is unnecessary to analyse the
nature of the input, in the sense of creating a model of the slow variations in it.
Concretely, in the demo example in this report, there was no need for the self-
controlling reservoir to detect that the variation in the input was a shift. While
the first extracted PC (the blue lines in Figure {4)) roughly follows the input shift,
it is however a nonlinear transformation of the sinewave-shaped shift dynamcis,
reflecting the nonlinear (saturation-related) impact of the input on the reservoir
states. The other PCs reflect slow response components intrinsic to the reservoir
rather than the nature of the external slow variation.

As a proof-of-principle demonstration, this approach was illustrated in this
report with what is likely the simplest kind of slow variation in input signals,
namely a slow drift in offset.

This report marks only a starting point for further investigations, which are
being pursued within the EU FP7 projects ORGANIC and AMARSIi in the ma-
chine learning group at Jacobs University. Questions which are under investigation
comprise the following:

e Use more refined controllers than a simple proportional one, e.g. by adding
integral terms to the error.

e Investigate slow reservoir observations that are not linear combinations of
smoothed reservoir states. Particularly interesting candidates are smoothed
energies of states and — in tasks that involve oscillatory data — smoothed
frequency measurements.

e Carry out a formal analysis of the efficiency, stability, and timescale separa-
tion issues of this method.

e Investigate how the simultaneous controls for the p; interact with each other:
I found that if only one of these PCs is controlled for, the control is more
efficient than when other PCs are controlled simultaneously (not reported).
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e Extend the approach to systems that are not input-driven signal transduc-
ers, but autonomous pattern generators. Slow observables of interest would
then be observables of the generated output, for instance, shift, amplitude
or frequency of an oscillatory output. The presented control method then
would be adapted to enable the pattern-generating reservoir to control these
properties of its output pattern. This would be of potential interest for
neural motor control.

e Generalize the control mechanism by admitting modulation of other reser-
voir quantities besides the unit activations. For instance, one could envision
a controller that modulates the reservoir weights. Such different target quan-
tities for control action require different training methods for the controller.
In preliminary studies, I used a numerical estimate of the gradient of the
slow observable to be controlled w.r.t. the controllable network parameters
to obtain analogs of the control vectors c;. In a pattern generation setting,
this method made it possible to control the frequency, amplitude and/or
shift of a periodic pattern generated by the network.
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