
Exercises for Computability and Complexity, Spring 2017, Sheet 1 – Solutions 
 
Please return your solutions in class, in the Thursday lecture on Feb 9. 
 
Note: You may work in teams up to size 2.  
 
Exercise 1 Show that a TM whose read/write head are restricted to the left and right moves 
{←, →}, can compute the same functions as the TMs from the definition in the lecture notes 
whose heads can pick motions from the set {←, →,  −}. 
 
Solution. Let M be a TM according to the lecture notes definition, and let  
 
p ∈ K   σ ∈ Σ   δ(p, σ) 
q a (q',  b,  −) 
 
be a transition that uses the standstill motion "-". Then you get the same ultimate effect of 
using this rule if you replace it in the TM's transition table by the following rules: 
 
p ∈ K   σ ∈ Σ   δ(p, σ) 
q a (q'return,  b,  →) 
q'return # (q',  #,  ←) 
(one such rule for every tape symbol #) 
 
where q'return is a new state which tells the TM to return to the left in the next step and switch 
to state q'. 
 
Exercise 2 Give a formal definition of a version of TMs that use a 2-dimensional grid of 
memory cells instead of a 1-dimensional tape. Start with a plain English description of your 
basic ideas and intuitions of how to make a 2-dim grid useful for computations in the TM 
spirit, that is, what special grid cell symbols you want to use, how to initialize the grid, how to 
administer input. Then repeat-adapt definition 3.1 in formal rigor, and also give a formal 
definition of a configuration. Note: there are many ways how a 2-dim TM can be set up in a 
reasonable way, so there is not a singular "correct" definition.   
 
Solution (one possibility) 
 
Definition. A 2D-Turing machine is a structure M = (K, Σ, δ, s), where K is a finite set of 
states, s ∈ K is the initial state, the alphabet Σ is a set of (tape) symbols, and where K and Σ 
are disjoint. We assume that Σ always contains the special symbols +, @, ı, Ì,called the 
blank, leftborder, upperborder and corner  symbol. Finally, δ is a transition function, where  
 

δ: K × Σ  → (K ∪ {h, "yes", "no"}) × Σ × {←, →,  ↑, ↓, − }. 
 
We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), 
and the cursor directions ← for "left", →for "right", ↑ for "up", ↓ for "down" and − for 
"stay", are extra symbols not in K ∪ Σ . Furthermore, we require that for any q ∈ K,  
 
 δ (q, @) ∈ (K ∪ {h, "yes", "no"}) × {@} × { →,  ↑, ↓, − }, 
 δ (q, ı) ∈ (K ∪ {h, "yes", "no"}) × { ı } × { ←, →, ↓, − }, 
 δ (q, Ì) ∈ (K ∪ {h, "yes", "no"}) × { Ì } × { →, ↓, − }. 



 
Conventions. The memory of a 2DTM is a right- and down-infinite grid of square cells cij, 
where i, j > 0. At startup, the 2DTM is in state s and the cursor is on cell c11. The initial 
inscription of the memory grid is 
 

- first row: a leftmost Ì followed by all ı 's 
- first column: a top Ì followed by all @'s 
- all other cells carry the symbol + exept finitely many which might carry other symbols 

from Σ. If some cell has a non-+ symbol, all cells above and to the left also have non-+  
symbols. The 2-dim pattern of all these non-+ symbols is the input pattern. 

 
Definition. A configuration of a 2D-TM is a quadruple (q, P, i, j) where q ∈ (K ∪ {h, "yes", 
"no"}), P is a pattern, that is a map from Z2 → Σ\{@, ı, Ì }, which has only finitely many 
non-+ values, and where  i, j are integers > 0.  
 
 
Exercise 3  Give a transition table for a TM that computes the function f(n) = 2n. The TM 
should have the tape alphabet {0, 1, @, +} and numbers are coded as binary strings by writing 
them to base 2.  
 
Solution. That's an easy one. Multiplying n by 2 means to append a 0 at the binary 
representation of n. A table for such a TM: 
 
p ∈ K   σ ∈ Σ   δ(q, σ) comment 

s @ (s, @, →) get started 
s 0 (s , 0, →) reading a 0, just move on to the right  
s 1 (s,  1, →) reading a 1, just move on to the right  
s + (h, 1, −) hitting the first blank, replace it by 1, halt 
 
 


