
Exercises for Computability and Complexity, Spring 2017, Sheet 2 – Solutions 
 
Please return your solutions in class, in the Thursday lecture on Feb 16. 
 
Note: You may work in teams up to size 2.  
 
Exercise 1. If one would admit TMs with countably many states, would this extend the set of 
TM-computable functions on the integers? In other words, is there a function  f: N → N which 
can be computed by some TM with countably infinitely many states, but not by any ordinary 
TM? Sketch a proof for your answer. 
 
Solution. With infinitely many states one can indeed "compute" more functions than with 
finitely many states. (In fact, with such a machine one could "compute" every function on the 
integers.) To see why, let f: N → {0, 1} be any function with binary values on the integers 
(that is, f picks a subset of the integers – and any subset can be thus picked by some such f – 
that is, there must be uncountably many such f, which in turn means that almost all of these f 
are not Turing-computable). Arrange an infinite-state TM M with state set K ⊇ {s1, s2, …} 
such that on input n, M first goes to sn (how can this be done? needs a subroutine) and then 
outputs f(n) due to a hardwired answer-table-lookup rule of the form δ(sn, a) = (h, f(n), - ).  
 
 
Exercise 3 (a) Are the functions f(n) = exp(n) and g(n) = exp(2n) polynomially related? (b) 
What about f(n) = exp(n) and g(n) = exp(n2)? Prove your answers.  
 
Solution. (a) Yes, by the quadratic polynomial p(n) = n2. We clearly have f(n) ≤ p(g(n)), and 
conversely, g(n) = (exp(n))2 = p(f(n)). 
(b) No. Assume there were a polynomial p(n) = na such that g(n) = exp(n2) = ≤ p(f(n)) = 
exp(na). Then for m > a, we would have g(m) = exp(mm) ≥ exp(ma), contradiction.  
 
Exercise 4 Show that L = {w ∈ {1}* | |w| is a power of 2} ∈ TIME(O(n log n)), by 
describing in words (and maybe sketches of interesting configurations) a TM (with possibly 
several tapes) that does this job.  
 
Solution. Set up a 2-tape TM, as follows. The first tape contains the input word, is read-only, 
and the cursor here never moves left. While the first cursor moves right, on the second tape a 
binary-coded count of the number of 1's visited is constructed. Whenever the first cursor 
moves to the right, the count on tape 2 is updated (which may take some operations where the 
first cursor does not move). The update is a combination of the add-1 and shift-right, single-
tape TMs from the lecture notes, which per add-1 operation may require 2 full back-and-forth 
traversals of the word b written on tape 2 up to that point, that is, 4 |b| TM cycles. When the 
last 1 on tape 1 has been processed, our TM enters a final round of checking whether the 2nd 
tape word b is of the form 10....0. If yes, the input is accepted, if no, not. This final check can 
be clearly effected in another |b| steps. Since |b| ≤ log2(|w|), we find that our TM uses at most 
log2(|w|)(4 n) + log2(|w|) = O(n log n) steps.  
 
 


