JTSK-320111
Programming in C |
C-Lab |

Lecture 5 & 6

Dr. Kinga Lipskoch

Fall 2017

Functions Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Libararies

Files

Revision

This Week's Agenda

v

Pointers and arrays

» Dynamic memory allocation

v

Multi-dimensional arrays

» Recursive functions
» Dealing with larger projects
» Handling files
» Revision
C-Lab | Fall 2017

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Passing Arrays to Functions

» An array does not store its size

» This has to be provided as a parameter, or by making
assumptions on the contents of the array (like for strings)

» When an array is passed to a function, a copy of the address
of the first element is given

v

Modifications to the elements are seen outside

v

Modifications to the array are not seen outside

v

Can you explain why?

C-Lab | Fall 2017

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Passing Arrays to Functions: Example

1 #include <stdio.h>

> #include <stdlib.h>

3 void strange_function(int v[], int dim) {

4 int 1i;

5 for (i = 0; i < dim; i++)

6 v[i] = 287;

7 // v = (int *) malloc(sizeof (int) * 1000) ;
s ¥

o int main() {

1 int arrayl[] = {1, 2, 9, 16};

11 int *p = &array[0];

12 strange_function(array, 4);

5 printf ("%d %x %x\n", array[0], p, array);
14}

C-Lab | Fall 2017 4/59

Functions

Dynamic Allocation Multi-dimensional Arrays Recursive Functions

Projects

Libararies
Dynamic Memory Allocation

Files Revision

» What if we do not know the dimension of the array while
coding?

» Dynamic memory allocation allows you to solve this problem
» And many others

» But can also cause a lot of troubles if you misuse it

C-Lab |

[=] = = = o
:

Fall 2017 5/59
R R R R RRRRRERRRRESSESSESSSSSS

Functions Dynamic Allocation

Multi-dimensional Arrays

Recursive Functions Projects
Pointers and Arrays

Libararies

Files Revision

the sequence

There is a strong relation between pointers and arrays
» Indeed an array is nothing but a pointer to the first element in

» We are looking at this in detail

C-Lab |

o = = = 9ace
.

Fall 2017 6/59
e

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Specifying the Dimension on the Fly

To specify the dimension on the fly you can use the malloc()
function defined in the header file stdlib.h

1 #include <stdio.h>

2> #include <stdlib.h>

3 int main() {
4 int *dyn_array, how_many, i;

5 printf ("How many elements? ");
6 scanf ("%d", &how_many) ;
7 dyn_array =
8 (int*) malloc(sizeof (int) * how_many);
9 if (dyn_array == NULL)
10 exit (1);
11 for (i = 0 ; i < how_many; i++) {
12 printf ("\nInput number %d:", i);
13 scanf ("%d", &dyn_arrayl[il);
14 } return O;
15 }
. . = 9ac
T CLab 1 Fall 2017 7/59 |

T

Functions Dynamic Allocation Multi-dimensional Arrays

Recursive Functions Projects Libararies Files Revision
.
The malloc () Function (1)
» void * malloc(unsigned int);
» malloc reserves a chunk of memory
» The parameter specifies how many bytes are requested
» malloc returns a pointer to the first byte of such a sequence
» The returned pointer must be forced (cast) to the required
type
o = = = = 9ace
| C-Lab | Fall 2017 |

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

The malloc () Function (2)

1 pointer = (cast) malloc(number of bytes);
2

3

4 char* a_str;

5 a_str = (char*) malloc(sizeof (char) * how_many);

» malloc returns a void * pointer (i.e., a generic pointer) and
this is assigned to a non void * pointer

> If you omit the casting you will get a warning concerning a
possible incorrect assignment

C-Lab |

,
Fall 2017

Functions

Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects Libararies

Files

Dynamically Allocating Space for an Array of char

Memory

0x4000

C-Lab |

[=] = = QA
:

Fall 2017 10/59
R R R R RRRRRRRRERESSSSEESSS——SSS

a_str = (char*) malloc(sizeof(char) * 5);
.

Functions

Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Dynamically

Libararies

Allocating Space for an Array of char

Files Revision

Memory

0x4000

char *a_str;

C-Lab |

[=] = = QA
:

Fall 2017 11/59
R R R ESESSESSES—SSSS

Functions

Dynamic Allocation

Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision
Dynamically Allocating Space for an Array of int
Memory

0x4000

C-Lab |

[=] = = QA
:

Fall 2017 12/59
R R R ESESSESSES—SSSS

dyn_arr = (int*) malloc(sizeof(int) * 5);

Functions

Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects Libararies

Files Revision
Dynamically Allocating Space for an Array of int

Memory

0x3000:¢

0x4000

int *dyn_arr;

C-Lab |

[=] = = QA
:

Fall 2017 13/59
R R R RRRRERRSSSSESSES——SSS

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

malloc() and free()

> All the memory you reserve via malloc, must be released by
using the free function

> If you keep reserving memory without freeing, you will run out
of memory

1 float *ptr;

2 int number;

3 ce

4 ptr = (float*) malloc(sizeof (float) =
number) ;

6 free(ptr);

C-Lab | Fall 2017 14 /59

T

Functions

Dynamic Allocation Multi-dimensional Arrays Recursive Functions

Rules for malloc() and free()

Libararies

Files Revision

» The following points are up to you (the compiler does not
perform any control)
NULL)

1. Always check if malloc returned a valid pointer (i.e., not
2. Free allocated memory just once

3. Free only dynamically allocated memory

» Not following these rules will cause endless troubles

> sizeof () is compile time operator, it does not work on
allocated memory

C-Lab |

[=] = = = o
:

Fall 2017 15/59
R R R RRRERRSESSSESSESSSSSS

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Review: Pointers, Arrays, Values

#include <stdio.h>
#include <stdlib.h>
int length[2] = {7, 9};
int *ptrl, *ptr2; int nl, n2;
int main() {
ptrl = &length[0];
// &length[0] is pointer to first elem
ptr2 = length;
// length is pointer to first elem therefore
// same as above
nl = length[0];
// length[0] is value
n2 = *ptr2;
// *ptr2 is value therefore same as above
printf ("ptrl: %p, ptr2: %p\n", ptrl, ptr2);
16 printf("ni1: %d, n2: %d\n", nl, n2);
17 return O;
18 } DA
. .

C-Lab | Fall 2017 16 /59
e

© 0 N o U W N e

e e e e
o A W N R O

Functions Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Libararies
Multi-dimensional Arrays

Files Revision

» It is possible to define multi-dimensional arrays

» Mostly used are bidimensional arrays, i.e., tables or matrices
» As for arrays, to access an element it is necessary to provide
an index for each dimension

» Think of matrices in mathematics

C-Lab |

[=] = = QA
:

Fall 2017 17 /59
R R R RRRRSSSSEESS—SSSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Multi-dimensional Arrays in C

> It is necessary to specify the size of each dimension

» Dimensions must be constants
> In each dimension the first element is at position 0

1 int matrix [10][20]; /* 10 rows, 20 cols x/
> float cube[5][5]1[5]; /* 125 elements */

» Every index goes between brackets

1 matrix [0] [0] = 5;

o
o)
I
i
it
)
pe)
i)

;
C-Lab | Fall 2017 18 /59

T

Functions

Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies

Files Revision

Multi-dimensional Arrays in C: Example

1 #include <stdio.h>
> int main() {

3 int table [50][50];

4 int i, j, row, col;

5 scanf ("%d4d", &row);

6 scanf ("%d", &col);

7 for (i = 0; i < row; i++)

8 for (j = 0; j < col; j++)

9 table[il[j] = i * j;

10 for (i = 0; i < row; i++)

11 {

12 for (j = 0; j < col; j++)

13 printf("%d ", table[il[j1);

14 printf ("\n");

15 }

16 return O0;

17 }

o & = = = 9ace

Y Fall 2017 19/59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

The main Function (1)

» Can return an int to the operating system
» Program exit code (can be omitted)
> print exit code in shell: $> echo $7

» Can accept two parameters:

> An integer (usually called argc)
» A vector of strings (usually called argv)
» argc specifies how many strings contains argv

o
o)
I
i
it
)
pe)
i)

:
C-Lab | Fall 2017 20/59
R R R R RRRRRRRRERESSSSEESSS——SSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

The main Function (2)

1 #include <stdio.h>

> int main(int argc, char *argv[]) {

3 int 1i;

for (i = 1; i < argc; i++)
printf ("%d %s\n", i, argv[il);

return O;

3

~ o a @ »

v

Compile it and call the executable paramscounter

v

Execute it as follows:
$> ./paramscounter first what this

v

It will print first, what and this, one word per line

v

Note that argc is always greater or equal than one

v

The first parameter is the program’s name
=] 5

i
it
)
pe)
o)

C-Lab | Fall 2017 21/59

Functions

Dynamic Allocation ~ Multi-dimensional Arrays

Recursive Functions

Projects
The const Keyword

Libararies Files

Revision

» The modifier const can be applied to variable declarations
> It states that the variable cannot be changed

» i.e., it is not a variable but a constant

» When applied to arrays it means that the elements cannot be
changed

C-Lab |

[=] = = = o
:

Fall 2017 22 /59
R R R R R R R R RRERREREEEEESSSSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

const Examples

1 const double e = 2.71828182845905;
const char str[]= "Hello world";

e = 3; /* error x/

str[0] = ’h’; /* error *x/

N

FO

» You can also use #define of the preprocessor

» But defines do not have type checking, while constants do

C-Lab | Fall 2017 23 /59

T

Functions

Dynamic Allocation ~ Multi-dimensional Arrays

Recursive Functions

Projects Libararies
More const Examples

Files Revision

> const char *text

"Hello";

» Does not mean that the variable text is constant
>

» The data pointed to by text is a constant
» While the data cannot be changed, the pointer can be changed
char *const name =

"Test";
> name is a constant pointer

» While the pointer is constant, the data the pointer points to
may be changed

» const char *const title = "Title";

» Neither the pointer nor the data may be changed

C-Lab |

[=] = = QA
:

Fall 2017 24 /59
R R R ESESSESSES—SSSS

Functions Dynamic Allocation

Multi-dimensional Arrays

Recursive Functions

Projects Libararies

Files Revision

Recursive Functions (1)

» Can a function call other functions?

» Yes, indeed function calls appear only inside other functions

(and everything starts with the execution of main)
» Can a function call itself?

» Yes, but in this case special care should be taken

» A function which calls itself is called a recursive function
» Function A calls function A

» At a certain point function B calls A

» A calls A then A calls A then A calls A ...

» When coding recursive functions attention should be paid to
avoid endless recursive calls

C-Lab |

5
Fall 2017

Functions Dynamic Allocation

Multi-dimensional Arrays

Recursive Functions Projects

Libararies Files Revision

Recursive Functions (2)

» Recursion theory can be studied for a longer time: here we
will just scratch its surface from a basic coding standpoint
» Every recursive function must contain some code which allows
it to terminate without entering the recursive step
» Usually called inductive base or base case

» When recursion is executed, the new call should be driven
"towards the inductive case”

,
C-Lab |

[=] = QA
:

Fall 2017 26 /59
R R R RRRRRRRSSSSEESES——SSS

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Stack of Calls: Example (1)

1 int factorial(int n) {

2 if ((n == 0) || (n == 1))

3 return 1;

4 else

5 return n * factorial(mn - 1);
6}

k-
2 1
3* 2
4* 6
24

o
o)
1
n
it
)
pe)
i)

;
C-Lab | Fall 2017 27 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Stack of Calls: Example (2)

From the main: call factorial(4)

factorial(1): n = 1, printf(“base”), return 1

factorial(2): n = 2, printf(2), val = 2 * factorial(1), printf(val), return val

factorial(3): n = 3, printf(3), val = 3 * factorial(2), printf(val), return val

AAAN

factorial(4): n = 4, printf(4), val = 4 * factorial(3), printf(val), return val

fi i =1, printf(“base”), return 1

factorial(2): n = i g =271, printf(2), return 2
factori =3Pt S =37 2, printf(6), return 6
factori A=A Pri Tvalr= 4 * 6, printf(24), return 24

] =5 =

v

i
it
)
pe)
i)

C-Lab | Fall 2017 28 /59

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Tracing the Stack of Calls

1 int factorial (int n) {

2 int val;

3 if ((n == 0) || (n == 1)) {

4 printf ("base\n");

5 return 1;

6 } else A

7 printf ("called with par = %d\n", n);
8 val = n * factorial(m - 1);

9 printf ("returning %d\n", val);
10 return val;

1 }

0 }

13 int main() {
14 printf ("/d\n", factorial (4));
15 return O0;

- L = A
, ,

C-Lab | Fall 2017 29 /59
e

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision
:

One More Example: Fibonacci Numbers

o 4L N<1
(N)= FIN=1)+F(N-2), N>1

1 int fibonacci(int n) {

> if ((n == 0) || (n == 1))

3 return 1;

4 else

5 return fibonacci(n-1) + fibonacci(n-2);
6

}

o
o)
1
n
it
)
pe)
i)

C-Lab | Fall 2017 30/59

T

Functions

Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions

Projects Libararies
Dealing with Big Projects

Files Revision

» Functions are a first step to break big programs in small
logical units

» A further step consists in breaking the source into many files
» Smaller files are easy to handle

executable

» Objects sharing a context can be put together and easily reused
» C allows to put together separately compiled files to have one

C-Lab |

[=] = = = o
:

Fall 2017 31/59
R R R RRRERRESSSESSESSSSSS

Functions

Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Libararies
Declarations and Definitions

Files Revision

» Declaration: introduces an object. After declaration the
object can be used

» Example: functions’' prototypes
» Definition: specifies the structure of an object

» Example: function definition

» Declarations can appear many times, definitions just once

C-Lab |

[=] = = = o
:

Fall 2017 32/59
R R R RRRERRESSSESSESSSSSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Building from Multiple Sources

» C compilers can compile multiple sources files into one
executable

» For every declaration there must be one definition in one of
the compiled files

» Indeed also libraries play a role
» This control is performed by the linker

» gcc -o name filel.c file2.c file3.c

C-Lab | Fall 2017 33/59

T

I mmmhnmnmm5Im5m—m—maS35Sa3SaS3SaS3a5aaaaaamam25m—_hems
Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision
: :

Libraries

» Libraries are collection of compiled definitions

» You include header files to get the declarations of objects in
libraries

» At linking time libraries are searched for unresolved
declarations

» Some libraries are included by gcc even if you do not
specifically ask for them

C-Lab | Fall 2017 34 /59
e

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Linking Math Functions: Example

1 #include <math.h>
> #include <stdio.h>

4 int main() {
5 double n;

6 double sn;
7
8
9

scanf ("%1f\n", &n); /* double needs %1f */
sn = sqrt(n);

10 /* conversion from double to float ok */
11 printf ("Square root of %f is %f\n", n, sn);

14 gcc -1lm -o compute compute.c

] =5 =

n
it
)
pe)
i)

C-Lab | Fall 2017 35/59

T

Functions Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Libararies
Compilers, Linkers and More

Files Revision

» Different compilers differ in many details
» Check your documentation

» Libraries names, ways to link against them, types of linking

» But preprocessing, compilation and linking are common steps

C-Lab |

[=] = = = o
:

Fall 2017 36 /59
R R R RRRRRRRSSSSSSESSSSSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

File Handling in C

» Input and output can come from/go into files

» C treats files as streams of data

» A stream is a sequence of bytes (either incoming or outgoing)
» The language does not provide basic constructs for file
handling, but rather the standard library does
=] 5 = = £ DA
| C-Lab | Fall 2017 37/59 |

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Files, C and UNIX

> The file view of C is influenced by UNIX
» UNIX sees everything as a file
» You have already used two files/streams

» stdin (standard input): associated with the keyboard
» stdout (standard output): associated with the screen

» These files are always tied to your program by the operating
system

C-Lab | Fall 2017 38/59
e

Functions Dynamic Allocation ~ Multi-dimensional Arrays ~ Recursive Functions

Working with Files

Libararies

Files Revision

» The paradigm is the following
> open the file

» read/write from/into file
» close the file

» In C the information concerning a file are stored in a FILE
structure (i.e., struct) defined in stdio.h

C-Lab |

[=] = = = o
:

Fall 2017 39 /59
R R R RRRRSSSESSESSSSSS

Functions

Dynamic Allocation

Multi-dimensional Arrays

Recursive Functions
File Modes

Projects Libararies

Files Revision

Windows)

Streams can be handled in two modes: (only important for MS

» Text streams: sequence of characters logically organized in
lines. Lines are terminated by a newline ("\n")

» Sometimes pre/post processed
» Example: text files

» Binary streams: sequence of raw bytes
» Examples: images, mp3, user defined file formats, etc

C-Lab |

[=] = = QA
:

Fall 2017 40 /59
R R R R RRRRRRRRERESSSSEESSS——SSS

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Opening a File

» To open a file the fopen function is used
FILE xfopen(const char * name, const char * mode)

» name: name of the file (OS level)

» mode: indicates the type of the file and the operations that
will be performed
FILE *fptr;
fptr = fopen("myfile.txt", "r");

C-Lab | Fall 2017 41/59

T

Functio

ns Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files

Revision

Mode Strings

String | Meaning

np Open for reading, positions at the beginning

"r+" | Open for reading and writing, positions at the beginning

"y Open for writing, truncate if exists, positions at the be-
ginning

"w+" | Open for reading and writing, truncate if exists, positions
at the beginning

"a Open for appending, does not truncate if exists, positions
at the end

"a+" | Open for appending and writing, does not truncate if

exists, positions at the end

A b or a t can be added to indicate it is a binary/text file

] =5 =

C-Lab |

Fall 2017 42/59

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Closing a File

> int fclose(FILE *fp);

» Forgetting to close a file might result in a loss of data

» After a file is closed it is not possible anymore to read/write
FILE *fptr;

-

/* do some operations */
fclose (fptr);

2 fptr = fopen("myfile.txt", "r");

3 if (fptr == NULL) {

4 printf ("Some error occurred!\n");
5 exit (1) ;

6 }

7

8

9

=
o

] =5 =

i
it
)
pe)
i)

C-Lab | Fall 2017 43 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Reading /Writing

Prototype Use

int getc(FILE *£fp) Returns next char from fp

int putc(int ¢, FILE *fp) Writes a char to fp

int fscanf (FILE* fp, char * Gets data from fp according

format, ...) to the format string

int fprintf(FILE* fp, char * Outputs data to fp accord-

format, ...) ing to the format string

=] 5 = = £ DA

| C-Lab | Fall 2017 44 /59 |

T

Functions

Dynamic Allocation Multi-dimensional Arrays

Recursive Functions

Projects

Libararies
Line Input and Line Output

Files Revision

char *fgets(char *line, int max, FILE *fp);
» Already seen with stdin

» Used for files as well
int fputs(char *line, FILE *fp);

» Outputs/writes a string to a file

C-Lab |

[=] = = QA
:

Fall 2017 45 /59
R R R RRRERRSESSSESSESSSSSS

Functions

Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Files: Example 1

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 char ch;
5 FILE x*fp;
6 fp = fopen("file.txt", "r");
7 if (fp == NULL) {
8 printf ("Cannot open file!\n");
9 exit (1) ;
10 }
11 ch = getc(fp);
12 while (ch != EOF) {
13 putchar (ch);
14 ch = getc(fp);
15 }
16 fclose (fp);
17 return O;
18 } DA
T CLab Fall 2017 46 /59 |

T

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Files: Example 2

1 # include <stdio.h>
> # include <stdlib.h>
3 int main () {

4 char ch;
5 FILE * fp;
6 fp = fopen("file.txt", "r") ;
7 if (fp == NULL) {
8 printf ("Cannot open file!\n");
9 exit (1) ;
10 }
11 while ((ch=getc (fp)) !=EO0F) {
12 putchar (ch);
13 }
14 fclose (fp);
15 return O0;
16
o < = = = 9Dace
T CLab Fall 2017 47 /59 |

T

Functions

Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Files: Example 3

1 #

include <stdio.h>

2> # include <stdlib.h>

3 int main () {

4 char ch;

5 FILE * fp;

6 fp = fopen("file.txt", "r") ;

7 if (fp == NULL) {

8 printf ("Cannot open file!\n");

9 exit (1) ;

10 }

11 while (! feof (fp)) {

12 ch=getc (fp);

13 if (ch!=EQF)

14 putchar (ch);

15 }

16 fclose (fp);

17 return O;

18 } DA
C-lab | Fall 2017 48/59 |

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Revisiting: Casting

» It is possible to overcome standard conversions (casting)

» To force to a different data type, put the desired data type
before the expression to be converted
(type name) expression

» Casting is a unary operator with high precedence

C-Lab | Fall 2017 49 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files

Revision
. .
Revisiting: Casting — Example
1 int a;
2 float f1 = 3.456, f2 = 1.22;
3 /* these operations imply demotions x*/
4 a = (int) f1 * f2; /* a is now 3 */
5 a = (int) (f1 *x f2); /* a is now 4 x*/
» You have already used casting when using malloc. malloc
returns a void * pointer (i.e., a generic pointer) and this is
assigned to a non void * pointer
» If you omit the casting you might get a warning concerning a
possible incorrect assignment
=] 5 = = £ DA

;
C-Lab | Fall 2017 50 /59

T

Functions Dynamic Allocation

Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Revisiting: String Functions

» Defined in string.h

> strlen
> strcat
> strcpy
> strcmp
» strchr

» strdup

determines the length of a string
concatenates two strings

copies one string into another
compares two strings

searches a char in a string

duplicates a string

» See man pages (man 3 string) or section B3 in the
Kernighan & Ritchie book

C-Lab |

Fall 2017 51/59

Functions

Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions

Projects
Revisiting: void *

Libararies

Files Revision

» void * is a generic pointer holding a memory address
» malloc returns a void *, thus the need for a cast
» Every pointer can be assigned to a void * pointer and vice
versa, without explicit casts

» This can create big problems

C-Lab |

[=] = = QA
:

Fall 2017 52 /59
R R R R RRERSSESSESSES——SSSS

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Revisiting: Misusing void*

1 int main(void) {

/* float * assigned to int *
via a generic pointer
this will not work correctly

2 void * vp; /* a generic pointer */
3 int * ip;

4 float £ = 1.234,

5 float * fp = &f;

6 vp = fp;

7 ip = vp;

8

9

-
o

*/

12 printf ("%d\n", *ip);

13 /* outputs some strange number */
14 return O;

-
jan

] =5 =

n
it
)
pe)
i)

C-Lab | Fall 2017 53 /59

T

Functions ~ Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects

Libararies

Files Revision

Examples Revisited (1)

1 char a_string[] = "This is a string\0";
2 char *p;
3 int count = O0;
4 int main() {
5 printf ("s\n", a_string);
6 for (p = &a_stringl[0]; *p != ’\0’; p++)
7 count ++;
8 printf ("The string has %d chars\n", count);
9 p-—;
10 printf ("Printing the reverse string:\n");
11 while (count > 0) {
12 printf ("%c", *p);
13 pP--;
14 count --;
15 }
16 return O0;
17 }
o P = = = 9ac
T CLab Fall 2017 54 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Examples Revisited (2)

w

© o N o o

11
12
13

To specify the dimension on the fly you can use the malloc
function defined in the header file stdlib.h

int *dyn_array, how_many, i;
printf ("How many elements? ");

scanf ("%d", &how_many) ;

dyn_array = (int*) malloc(sizeof (int) =*
how_many) ;

if (dyn_array == NULL)
exit (1) ;

for (i = 0 ; i < how_many; i++) {

printf ("\nInput number %d:", i);
scanf ("%d", &dyn_arrayl[i]);
}

] =5 =

i
it
)
pe)
i)

C-Lab |

Fall 2017 55 /59

T

Functions

Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies

Files Revision

Examples Revisited (3) — Reading from the Keyboard

1 #include <stdio.h>
> int main() {

3 int v;

4 char str[30];

5 char line[80];

6 printf ("Enter a string: ");

7 fgets(line, sizeof (line), stdin);

8 sscanf (line, "%s", str); // not really needed

9 // just read str directly

10

11 printf ("Enter a number: ");

12 fgets(line, sizeof(line), stdin);

13 sscanf (line, "%d", &v);

14 printf ("String: %s\n", str);

15 printf ("Number: %d\n", v);

16 return O0;

17 }

o = = = = 9ace

Y Fall 2017 56 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision
: :

Conversion Specification for printf ()

Conversion Meaning

%he single character
%d signed decimal integer
hE double (also float)
the floating point (exponential notation)
hs string (pointer needs to be passed)
=} 5 = = £ DA
| C-Lab | Fall 2017 57 /59 |

e

Functions Dynamic Allocation ~ Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Conversion Specification for scanf ()

Conversion Meaning

as above
%t float (decimal notation)
yaks double (decimal notation)

o
o)
1
n
it
)
pe)
i)

C-Lab | Fall 2017 58 /59

T

Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects Libararies Files Revision

Final Exam: Details

» Information about exact time and location of the final exam
will follow
» Programming exercises to be solved on paper

» You have two hours to solve exercises
> Similar to the programming assignments
» Practice to write your programs on paper

» You do not need paper, it will be provided

» You may not use books or other documentation while taking
the exam

» You may not use mobile phones, calculators or any other
electronic devices

C-Lab | Fall 2017 59 /59

	Functions
	Dynamic Allocation
	Multi-dimensional Arrays
	Recursive Functions
	Projects
	Libararies
	Files
	Revision

