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This Week's Agenda

v

Pointers and arrays

» Dynamic memory allocation

v

Multi-dimensional arrays

» Recursive functions
» Dealing with larger projects
» Handling files
» Revision
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Passing Arrays to Functions

» An array does not store its size

» This has to be provided as a parameter, or by making
assumptions on the contents of the array (like for strings)

» When an array is passed to a function, a copy of the address
of the first element is given

v

Modifications to the elements are seen outside

v

Modifications to the array are not seen outside

v

Can you explain why?

C-Lab | Fall 2017




Functions Dynamic Allocation Multi-dimensional Arrays Recursive Functions Projects  Libararies  Files  Revision

Passing Arrays to Functions: Example

1 #include <stdio.h>

> #include <stdlib.h>

3 void strange_function(int v[], int dim) {

4 int 1i;

5 for (i = 0; i < dim; i++)

6 v[i] = 287;

7 // v = (int *) malloc(sizeof (int) * 1000) ;
s ¥

o int main() {

1 int arrayl[] = {1, 2, 9, 16};

11 int *p = &array[0];

12 strange_function(array, 4);

5 printf ("%d %x %x\n", array[0], p, array);
14}
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» What if we do not know the dimension of the array while
coding?

» Dynamic memory allocation allows you to solve this problem
» And many others

» But can also cause a lot of troubles if you misuse it
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the sequence

There is a strong relation between pointers and arrays
» Indeed an array is nothing but a pointer to the first element in

» We are looking at this in detail

C-Lab |
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Specifying the Dimension on the Fly

To specify the dimension on the fly you can use the malloc()
function defined in the header file stdlib.h

1 #include <stdio.h>

2> #include <stdlib.h>

3 int main() {
4 int *dyn_array, how_many, i;

5 printf ("How many elements? ");
6 scanf ("%d", &how_many) ;
7 dyn_array =
8 (int*) malloc(sizeof (int) * how_many);
9 if (dyn_array == NULL)
10 exit (1);
11 for (i = 0 ; i < how_many; i++) {
12 printf ("\nInput number %d:", i);
13 scanf ("%d", &dyn_arrayl[il);
14 } return O;
15 }
. . = 9ac
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.
The malloc () Function (1)
» void * malloc(unsigned int);
» malloc reserves a chunk of memory
» The parameter specifies how many bytes are requested
» malloc returns a pointer to the first byte of such a sequence
» The returned pointer must be forced (cast) to the required
type
o = = = = 9ace
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The malloc () Function (2)

1 pointer = (cast) malloc(number of bytes);
2

3

4 char* a_str;

5 a_str = (char*) malloc(sizeof (char) * how_many);

» malloc returns a void * pointer (i.e., a generic pointer) and
this is assigned to a non void * pointer

> If you omit the casting you will get a warning concerning a
possible incorrect assignment
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0x4000
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a_str = (char*) malloc(sizeof(char) * 5);
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Memory

0x4000

char *a_str;
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Dynamically Allocating Space for an Array of int
Memory

0x4000

C-Lab |

[=] = = QA
:

Fall 2017 12/59
R R R ESESSESSES—SSSS

dyn_arr = (int*) malloc(sizeof(int) * 5);
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Dynamically Allocating Space for an Array of int

Memory

0x3000:¢

0x4000

int *dyn_arr;
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malloc() and free()

> All the memory you reserve via malloc, must be released by
using the free function

> If you keep reserving memory without freeing, you will run out
of memory

1 float *ptr;

2 int number;

3 ce

4 ptr = (float*) malloc(sizeof (float) =
number) ;

6 free(ptr);

C-Lab | Fall 2017 14 /59
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» The following points are up to you (the compiler does not
perform any control)
NULL)

1. Always check if malloc returned a valid pointer (i.e., not
2. Free allocated memory just once

3. Free only dynamically allocated memory

» Not following these rules will cause endless troubles

> sizeof () is compile time operator, it does not work on
allocated memory
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Review: Pointers, Arrays, Values

#include <stdio.h>
#include <stdlib.h>
int length[2] = {7, 9};
int *ptrl, *ptr2; int nl, n2;
int main() {
ptrl = &length[0];
// &length[0] is pointer to first elem
ptr2 = length;
// length is pointer to first elem therefore
// same as above
nl = length[0];
// length[0] is value
n2 = *ptr2;
// *ptr2 is value therefore same as above
printf ("ptrl: %p, ptr2: %p\n", ptrl, ptr2);
16 printf("ni1: %d, n2: %d\n", nl, n2);
17 return O;
18 } DA
. .
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» It is possible to define multi-dimensional arrays

» Mostly used are bidimensional arrays, i.e., tables or matrices
» As for arrays, to access an element it is necessary to provide
an index for each dimension

» Think of matrices in mathematics
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Multi-dimensional Arrays in C

> It is necessary to specify the size of each dimension

» Dimensions must be constants
> In each dimension the first element is at position 0

1 int matrix [10][20]; /* 10 rows, 20 cols x/
> float cube[5][5]1[5]; /* 125 elements */

» Every index goes between brackets

1 matrix [0] [0] = 5;

o
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Multi-dimensional Arrays in C: Example

1 #include <stdio.h>
> int main() {

3 int table [50][50];

4 int i, j, row, col;

5 scanf ("%d4d", &row);

6 scanf ("%d", &col);

7 for (i = 0; i < row; i++)

8 for (j = 0; j < col; j++)

9 table[il[j] = i * j;

10 for (i = 0; i < row; i++)

11 {

12 for (j = 0; j < col; j++)

13 printf("%d ", table[il[j1);

14 printf ("\n");

15 }

16 return O0;

17 }

o & = = = 9ace
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The main Function (1)

» Can return an int to the operating system
» Program exit code (can be omitted)
> print exit code in shell: $> echo $7

» Can accept two parameters:

> An integer (usually called argc)
» A vector of strings (usually called argv)
» argc specifies how many strings contains argv

o
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The main Function (2)

1 #include <stdio.h>

> int main(int argc, char *argv[]) {

3 int 1i;

for (i = 1; i < argc; i++)
printf ("%d %s\n", i, argv[il);

return O;

3

~ o a @ »

v

Compile it and call the executable paramscounter

v

Execute it as follows:
$> ./paramscounter first what this

v

It will print first, what and this, one word per line

v

Note that argc is always greater or equal than one

v

The first parameter is the program’s name
=] 5
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» The modifier const can be applied to variable declarations
> It states that the variable cannot be changed

» i.e., it is not a variable but a constant

» When applied to arrays it means that the elements cannot be
changed
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const Examples

1 const double e = 2.71828182845905;
const char str[]= "Hello world";

e = 3; /* error x/

str[0] = ’h’; /* error *x/

N

FO

» You can also use #define of the preprocessor

» But defines do not have type checking, while constants do

C-Lab | Fall 2017 23 /59
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> const char *text

"Hello";

» Does not mean that the variable text is constant
>

» The data pointed to by text is a constant
» While the data cannot be changed, the pointer can be changed
char *const name =

"Test";
> name is a constant pointer

» While the pointer is constant, the data the pointer points to
may be changed

» const char *const title = "Title";

» Neither the pointer nor the data may be changed
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Recursive Functions (1)

» Can a function call other functions?

» Yes, indeed function calls appear only inside other functions

(and everything starts with the execution of main)
» Can a function call itself?

» Yes, but in this case special care should be taken

» A function which calls itself is called a recursive function
» Function A calls function A

» At a certain point function B calls A

» A calls A then A calls A then A calls A ...

» When coding recursive functions attention should be paid to
avoid endless recursive calls

C-Lab |
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Recursive Functions (2)

» Recursion theory can be studied for a longer time: here we
will just scratch its surface from a basic coding standpoint
» Every recursive function must contain some code which allows
it to terminate without entering the recursive step
» Usually called inductive base or base case

» When recursion is executed, the new call should be driven
"towards the inductive case”

,
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Stack of Calls: Example (1)

1 int factorial(int n) {

2 if ((n == 0) || (n == 1))

3 return 1;

4 else

5 return n * factorial(mn - 1);
6}

k-
2 1
3* 2
4* 6
24

o
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;
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Stack of Calls: Example (2)

From the main: call factorial(4)

factorial(1): n = 1, printf(“base”), return 1

factorial(2): n = 2, printf(2), val = 2 * factorial(1), printf(val), return val

factorial(3): n = 3, printf(3), val = 3 * factorial(2), printf(val), return val

AAAN

factorial(4): n = 4, printf(4), val = 4 * factorial(3), printf(val), return val

fi i =1, printf(“base”), return 1

factorial(2): n = i g =271, printf(2), return 2
factori =3Pt S =37 2, printf(6), return 6
factori A=A Pri Tvalr= 4 * 6, printf(24), return 24

] =5 =
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Tracing the Stack of Calls

1 int factorial (int n) {

2 int val;

3 if ((n == 0) || (n == 1)) {

4 printf ("base\n");

5 return 1;

6 } else A

7 printf ("called with par = %d\n", n);
8 val = n * factorial(m - 1);

9 printf ("returning %d\n", val);
10 return val;

1 }

0 }

13 int main() {
14 printf ("/d\n", factorial (4));
15 return O0;

- L = A
, ,
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One More Example: Fibonacci Numbers

o 4L N<1
(N)= FIN=1)+F(N-2), N>1

1 int fibonacci(int n) {

> if ((n == 0) || (n == 1))

3 return 1;

4 else

5 return fibonacci(n-1) + fibonacci(n-2);
6

}

o
o)
1
n
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)
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» Functions are a first step to break big programs in small
logical units

» A further step consists in breaking the source into many files
» Smaller files are easy to handle

executable

» Objects sharing a context can be put together and easily reused
» C allows to put together separately compiled files to have one
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» Declaration: introduces an object. After declaration the
object can be used

» Example: functions’' prototypes
» Definition: specifies the structure of an object

» Example: function definition

» Declarations can appear many times, definitions just once

C-Lab |
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Building from Multiple Sources

» C compilers can compile multiple sources files into one
executable

» For every declaration there must be one definition in one of
the compiled files

» Indeed also libraries play a role
» This control is performed by the linker

» gcc -o name filel.c file2.c file3.c

C-Lab | Fall 2017 33/59
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Libraries

» Libraries are collection of compiled definitions

» You include header files to get the declarations of objects in
libraries

» At linking time libraries are searched for unresolved
declarations

» Some libraries are included by gcc even if you do not
specifically ask for them

C-Lab | Fall 2017 34 /59
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Linking Math Functions: Example

1 #include <math.h>
> #include <stdio.h>

4 int main() {
5 double n;

6 double sn;
7
8
9

scanf ("%1f\n", &n); /* double needs %1f */
sn = sqrt(n);

10 /* conversion from double to float ok */
11 printf ("Square root of %f is %f\n", n, sn);

14 gcc -1lm -o compute compute.c

] =5 =
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» Different compilers differ in many details
» Check your documentation

» Libraries names, ways to link against them, types of linking

» But preprocessing, compilation and linking are common steps
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File Handling in C

» Input and output can come from/go into files

» C treats files as streams of data

» A stream is a sequence of bytes (either incoming or outgoing)
» The language does not provide basic constructs for file
handling, but rather the standard library does
=] 5 = = £ DA
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Files, C and UNIX

> The file view of C is influenced by UNIX
» UNIX sees everything as a file
» You have already used two files/streams

» stdin (standard input): associated with the keyboard
» stdout (standard output): associated with the screen

» These files are always tied to your program by the operating
system

C-Lab | Fall 2017 38/59
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» The paradigm is the following
> open the file

» read/write from/into file
» close the file

» In C the information concerning a file are stored in a FILE
structure (i.e., struct) defined in stdio.h
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Windows)

Streams can be handled in two modes: (only important for MS

» Text streams: sequence of characters logically organized in
lines. Lines are terminated by a newline ("\n")

» Sometimes pre/post processed
» Example: text files

» Binary streams: sequence of raw bytes
» Examples: images, mp3, user defined file formats, etc
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Opening a File

» To open a file the fopen function is used
FILE xfopen(const char * name, const char * mode)

» name: name of the file (OS level)

» mode: indicates the type of the file and the operations that
will be performed
FILE *fptr;
fptr = fopen("myfile.txt", "r");
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Mode Strings

String | Meaning

np Open for reading, positions at the beginning

"r+" | Open for reading and writing, positions at the beginning

"y Open for writing, truncate if exists, positions at the be-
ginning

"w+" | Open for reading and writing, truncate if exists, positions
at the beginning

"a Open for appending, does not truncate if exists, positions
at the end

"a+" | Open for appending and writing, does not truncate if

exists, positions at the end

A b or a t can be added to indicate it is a binary/text file

] =5 =
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Closing a File

> int fclose(FILE *fp);

» Forgetting to close a file might result in a loss of data

» After a file is closed it is not possible anymore to read/write
FILE *fptr;

-

/* do some operations */
fclose (fptr);

2 fptr = fopen("myfile.txt", "r");

3 if (fptr == NULL) {

4 printf ("Some error occurred!\n");
5 exit (1) ;

6 }

7

8

9

=
o
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Reading /Writing

Prototype Use

int getc(FILE *£fp) Returns next char from fp

int putc(int ¢, FILE *fp) Writes a char to fp

int fscanf (FILE* fp, char * Gets data from fp according

format, ...) to the format string

int fprintf(FILE* fp, char * Outputs data to fp accord-

format, ...) ing to the format string

=] 5 = = £ DA
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char *fgets(char *line, int max, FILE *fp);
» Already seen with stdin

» Used for files as well
int fputs(char *line, FILE *fp);

» Outputs/writes a string to a file
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Files: Example 1

1 #include <stdio.h>
2 #include <stdlib.h>
3 int main() {

4 char ch;
5 FILE x*fp;
6 fp = fopen("file.txt", "r");
7 if (fp == NULL) {
8 printf ("Cannot open file!\n");
9 exit (1) ;
10 }
11 ch = getc(fp);
12 while (ch != EOF) {
13 putchar (ch);
14 ch = getc(fp);
15 }
16 fclose (fp);
17 return O;
18 } DA
T CLab Fall 2017 46 /59 |
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Files: Example 2

1 # include <stdio.h>
> # include <stdlib.h>
3 int main () {

4 char ch;
5 FILE * fp;
6 fp = fopen("file.txt", "r") ;
7 if (fp == NULL) {
8 printf ("Cannot open file!\n");
9 exit (1) ;
10 }
11 while ((ch=getc (fp)) !=EO0F) {
12 putchar (ch);
13 }
14 fclose (fp);
15 return O0;
16
o < = = = 9Dace
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Files: Example 3

1 #

include <stdio.h>

2> # include <stdlib.h>

3 int main () {

4 char ch;

5 FILE * fp;

6 fp = fopen("file.txt", "r") ;

7 if (fp == NULL) {

8 printf ("Cannot open file!\n");

9 exit (1) ;

10 }

11 while (! feof (fp)) {

12 ch=getc (fp);

13 if (ch!=EQF)

14 putchar (ch);

15 }

16 fclose (fp);

17 return O;

18 } DA
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Revisiting: Casting

» It is possible to overcome standard conversions (casting)

» To force to a different data type, put the desired data type
before the expression to be converted
(type name) expression

» Casting is a unary operator with high precedence

C-Lab | Fall 2017 49 /59
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Revisiting: Casting — Example
1 int a;
2 float f1 = 3.456, f2 = 1.22;
3 /* these operations imply demotions x*/
4 a = (int) f1 * f2; /* a is now 3 */
5 a = (int) (f1 *x f2); /* a is now 4 x*/
» You have already used casting when using malloc. malloc
returns a void * pointer (i.e., a generic pointer) and this is
assigned to a non void * pointer
» If you omit the casting you might get a warning concerning a
possible incorrect assignment
=] 5 = = £ DA
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Revisiting: String Functions

» Defined in string.h

> strlen
> strcat
> strcpy
> strcmp
» strchr

» strdup

determines the length of a string
concatenates two strings

copies one string into another
compares two strings

searches a char in a string

duplicates a string

» See man pages (man 3 string) or section B3 in the
Kernighan & Ritchie book
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» void * is a generic pointer holding a memory address
» malloc returns a void *, thus the need for a cast
» Every pointer can be assigned to a void * pointer and vice
versa, without explicit casts

» This can create big problems
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Revisiting: Misusing void*

1 int main(void) {

/* float * assigned to int *
via a generic pointer
this will not work correctly

2 void * vp; /* a generic pointer */
3 int * ip;

4 float £ = 1.234,

5 float * fp = &f;

6 vp = fp;

7 ip = vp;

8

9

-
o

*/

12 printf ("%d\n", *ip);

13 /* outputs some strange number */
14 return O;

-
jan
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Examples Revisited (1)

1 char a_string[] = "This is a string\0";
2 char *p;
3 int count = O0;
4 int main() {
5 printf ("s\n", a_string);
6 for (p = &a_stringl[0]; *p != ’\0’; p++)
7 count ++;
8 printf ("The string has %d chars\n", count);
9 p-—;
10 printf ("Printing the reverse string:\n");
11 while (count > 0) {
12 printf ("%c", *p);
13 pP--;
14 count --;
15 }
16 return O0;
17 }
o P = = = 9ac
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Examples Revisited (2)

w

© o N o o

11
12
13

To specify the dimension on the fly you can use the malloc
function defined in the header file stdlib.h

int *dyn_array, how_many, i;
printf ("How many elements? ");

scanf ("%d", &how_many) ;

dyn_array = (int*) malloc(sizeof (int) =*
how_many) ;

if (dyn_array == NULL)
exit (1) ;

for (i = 0 ; i < how_many; i++) {

printf ("\nInput number %d:", i);
scanf ("%d", &dyn_arrayl[i]);
}
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Examples Revisited (3) — Reading from the Keyboard

1 #include <stdio.h>
> int main() {

3 int v;

4 char str[30];

5 char line[80];

6 printf ("Enter a string: ");

7 fgets(line, sizeof (line), stdin);

8 sscanf (line, "%s", str); // not really needed

9 // just read str directly

10

11 printf ("Enter a number: ");

12 fgets(line, sizeof(line), stdin);

13 sscanf (line, "%d", &v);

14 printf ("String: %s\n", str);

15 printf ("Number: %d\n", v);

16 return O0;

17 }

o = = = = 9ace
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Conversion Specification for printf ()

Conversion Meaning

%he single character
%d signed decimal integer
hE double (also float)
the floating point (exponential notation)
hs string (pointer needs to be passed)
=} 5 = = £ DA
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Conversion Specification for scanf ()

Conversion Meaning

as above
%t float (decimal notation)
yaks double (decimal notation)
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Final Exam: Details

» Information about exact time and location of the final exam
will follow
» Programming exercises to be solved on paper

» You have two hours to solve exercises
> Similar to the programming assignments
» Practice to write your programs on paper

» You do not need paper, it will be provided

» You may not use books or other documentation while taking
the exam

» You may not use mobile phones, calculators or any other
electronic devices
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