
Machine Learning (lecture) Fall 2014: Exercise sheet 4

Microproject: classifying 10 digits by generalized linear regression

Return your documented code and results by email by Sunday Oct 19, midnight

Task description, executive summary: design, optimize and test a generalized linear
discriminant classifier for the full digits dataset (digits 0, 1, ..., 9).

Detail:

• Training data: the first 100 of each of the 200 examples per digit in the by now

familiar mfeat dataset. Use only these for optimizing your classification model
(in a cross-validation scheme).

• Invent L features φ1(x), ..., φL(x) (where x is the raw picture vector) which you
think may carry classification-relevant information. The choice of L is in your
hands.

• Implement a linear classifyer (of the type given in Equation (3.7) or (3.21) in the
Section 3 handout) which takes (1, φ1(x), ..., φL(x)) and returns a 10-dimensional
output vector y(x).

• Compute regularized linear regresssion weights W of this linear classifier as in
Equation (3.17).

• Find the best setting for the Tychonov regularizer coefficient by some version of
cross-validation.

• Optionally (if you are ambitious) you may furthermore optimize your features
(kind and number) with cross-validation.

• If you are done optimizing your classifier on the training data, test it on the
remaining half of the data, that is, on the 10 x 100 = 1000 images that you did not
touch so far. Report the nr of misclassifications.

It may be interesting for you that with some effort, 15 test misclassifications have
been achieved (documented in an article by Duin and Tax, URL on the course
homepage).

Deliverables:

1. A runnable Matlab or Python script learn_test_digits which trains the
classifier weights W and tests the resulting classifier on the test data, returning
the nr of misclassifications. This script need not do the cross-validation part.
Instead, the script learn_test_digits will use the Tychonov
regularizer and the features that you have optimized separately.

2. Any function definition files that are called from learn_test_digits.
3. You do not have to deliver the code that you used for the cross-validations or

for experimenting with feature designs. However, please document this part of
the project, explaining in plain English how you designed your features, and
documenting (including a plot) the crossvalidation / regularization. Target size
for the written documentation: 1 page.

Send your zipped files to h.jaeger@jacobs-university.de and the course TA Dzmitri
Bahdanau d.bahdanau@jacobs-university.de by Sunday, October 19, midnight. Please
name your zipfile as follows:

<your last name>HW4.

Bonus This is a relatively heavyweight exercise, and if you invest a lot of effort it
should be accordingly rewarded. So, the five HWs with the best test recognition rates
will receive 5, 4, 3, 2, 1 bonus points, respectively. Only solutions with a transparent
written documentation are eligible however. A bonus point is added to the total course
score at the end of the semester – it adds to the course score in "undiluted" form and
thus is quite valuable. 3 bonus points roughly amount to an improvement of the final
course grade by 1/3.

