PSM Fall 2015, Exercise Sheet 2

Return on Monday Sep 21 in class

Note. You are encouraged to work in teams of two –- but no larger. If you work in a team, submit only a single sheet with both names indicated on it. Nicely type-set solutions are highly appreciated.

Problem 1 (30 pts). (Motto: make friends with σ -fields)

Let (M, \mathcal{G}) be a measurable space consisting of a set M with a σ -fields $\mathcal{G} \subseteq Pot(M)$. That is, \mathcal{G} satisfies the conditions spelled out in Definition 7.2 in the lecture notes. Use these conditions to prove the following facts:

- (i) closure under countable intersection: if $A_i \in \mathcal{G}$, $(i \in \mathbb{N})$, then $\bigcap_{i \in \mathbb{N}} A_i \in \mathcal{G}$.
- (ii) If $B \subseteq M$ is some non-empty subset of M, then $\mathcal{G}' = \{A \cap B \mid A \in \mathcal{G}\}$ is a σ -field on B. It is called the *restriction* of \mathcal{G} on B.
- (iii) If \mathcal{G} and \mathcal{H} are σ -fields on M, then $\mathcal{G} \cap \mathcal{H}$ is a σ -field on M.

Problem 2 (pts) (Make friends with the Borel σ -fields)

The Borel σ -field $\mathcal{B} \subseteq \operatorname{Pot}(\mathbb{R})$ is a particular, widely used, "natural" σ -field on the reals. We will explore it a little. \mathcal{B} contains (among many other subsets of the reals) all the closed nonempty intervals $[a, b] \subseteq \mathbb{R}$, where a < b. Use this fact and the definition of σ -fields to show the following facts:

- (i) the half-infinite intervals $[a, \infty) = \{x \in \mathbb{R} \mid a \le x\}$ are elements of \mathcal{B} .
- (ii) the open intervals (a, b) are elements of \mathcal{B} . (Note: the closed interval [a, b] is the set $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ and the open interval is the set $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
- (iii) Any countable (finite or infinite) subset of \mathbb{R} is in \mathcal{B} .

(iv) Teaser question (optional). Borel σ -fields are also defined on higherdimensional Euclidean spaces \mathbb{R}^n . Similar to the one-dimensional case, the Borel σ field \mathcal{B}^n on \mathbb{R}^n contains all closed hypercubes $[a_1, b_1] \times ... \times [a_n, b_n]$. Use this to show that \mathcal{B}^2 on \mathbb{R}^2 also contains the diagonal line set $\{(x, x) \in \mathbb{R}^2 | x \in \mathbb{R}\}$. (In fact \mathcal{B}^2 contains any set of points that can be visualized as a curve in \mathbb{R}^2).

Some background information worth knowing:

- Borel σ-fields are in fact *defined* by the condition that they are the smallest σfields which contain the intervals (one-dimensional case) or the hypercubes (higher dimensional cases).
- By using the statement (ii) from problem 2, Borel σ-fields can be defined on any subset of Rⁿ, for instance on the unit sphere or on linear subspaces.

Problem 3 (pts) Prove the three facts stated in the lecture notes after Definition 8.1:

- (i) $P(\emptyset) = 0$
- (i) $P(F^{\circ}) = 1 P(F)$ (ii) $F \subseteq F' \implies P(F) \le P(F')$