Algorithmical and Statistical Modelling, Fall 2007,
Midterm

Note: the points of the problems below sum to 120, of which a mazimum
of 100 will be scored for the course grade (“safety margin”).

Problem 1. (30 points, challenge: display mathematical rigour)
Let (Q, F, P) be a probability space and A, B € F two events. Prove that if
P(AAB) =0, then P(A) = P(B).

Hints: The symmetric difference of two sets A and B is defined by

AAB:= (AUB)\ (ANB) = (AUB)N(ANB)° = (A\ B)U(B\ A).

According to the lecture notes, a probability space is a triple (2, F, P)
(of a nonvoid set 2, a nonvoid family of subsets of {2 and a set function
P : F —0,1]) satistying the following Kolmogorov axioms:

(K1) Qe F;

(K2) A € F implies A° € F (closure under complement);
(K3) {An}n=1,2,.. € F implies |J;>; A, € F (closure under countable

union);
(K1) P() = 1;
(K5) for every pairwise disjoint sequence (A )p=12... in F it holds that
U Z P(A (o-additivity) ,

n=1
where the symbol & indicates “disjoint union”.

Here are three elementary probabilities of probability spaces, which follow
from the Kolmogorov axioms:

(P1) o € F;

(P2) P(2) =

(P3) if A,B € ]: then also AAB € F;
(P4) if A,B € F, then also ANB € F.

You can directly use the above (K1-K5), (P1- P4) and basic facts from
set theory such as A C AU B in your proof. Beyond that, you should prove
everything you say, and also make sure that every item that you introduce



s well-defined.

Proof: For any A, B € F, it follows from (K2, P4) that A\B = ANB° € F,
ie.,

(P5) A, B € F implies A\ B € F — and so P(A\ B) has definition.

Furthermore, if A, B € F are disjoint, putting Ay = A, Ao = Band A, =9
for n > 3, by (K5, P2) we get P(AwWB) = P(A)+ P(B). Thus, if A,B € F
and A C B, then P(B) = P(AwW (B\ A)) = P(A)+ P(B\ A) > P(A).

Summarizing, we have

(P6) A, B € Fand A C B imply P(B\A) = P(B)—P(A) and P(A) < P(B).

Since AN B C AU B, by the definition of AAB and (P6), we have P(A U
B) - P(ANB)=P(AAB) =0,1ie., P(LAUB) = P(ANB). Since ANB C
A C AUB, we know P(ANB) < P(A) < P(AU B). It is now clear that
P(A) = P(AN B). Similarly, P(B) = P(AN B). Thus, P(A) = P(B).

Problem 2. (20 points, challenge: conceptual design.) In sciences
that are concerned with historical texts (like religion, history of literature,
history, and others), one is sometimes confronted with the question whether
two texts have been written by the same or by two different authors. This
can refer to texts that come in different documents, or to sections within a
longer document (like the books that make up the Bible, or certain large por-
tions within a the Niebelungenlied, a classical German mideval verse saga).
Your task: describe a probabilistic model which text historians could use as
the basis for the task of deciding whether two texts have a common author.
Provide the following components of such a model: (i) (5 points) an un-
derlying event space (2, described in plain English, (ii) (15 points) suitable
random variables, where each RV is specified through its observation space
FE — specify these as rigorously as possible. Justify why you propose these
random variables as a basis for the author decision task. Take into consid-
eration that two texts may not only be from two different authors, but also
typically are about two different topics...

Note: as always in nontrivial modelling cases, there is not a unique
correct solution but considerable freedom of design.

Target length of your answer: about the same as the length of this
problem statement.



Solution. (i) A possible Q2 would be the set of all events w where some
author at some time in the past produces some text. (ii) For RVs, a simplistic
but not stupid approach is to introduce two different types of RVs. The
first, X, yields authors, and is a hidden variable: X (w) is the author of the
textwriting event w; the observation space is the finite set of authors that
lived on earth so far. The second type of RV, Y;, where ¢ = 1,2, ... gives the
length of the i-th sentence in a text, i.e. Yj(w) is the i-th word in the text
written in the textwriting event w. For mathematical “total rigour”, one
could define Y;(w) = € in case that i is larger than the text has sentences.
The observation space for the variables Y; is N. One may (even must) assume
that the Y; are identically distributed (and to some degree, at least for i,
which are sufficiently spaced, also independently). The rationale behind
this choice is that different authors have different styles, and an important
(although not uniquely identifying) aspect of style is the length distribution
of sentences. If the empirical sentence length distributions from two texts
differs significantly (by some statistical test tailored to this situation), one
may this, with due caution, as an indication that the two texts have different
authors. It would sharpen the test if additional style-characterizing variables
were measured.

Problem 3. (20 points; challenge: understanding acceptance func-
tions) (a.) (5 points) Show that the Boltzmann acceptance function,

\ 9(x*)

AT = 56+ .
where g is the pdf of the distribution from which is being sampled, x* is the
proposed new sample point offered by the proposal distribution, and x is the
current sample point, has the detailed balance property, when the proposal
distribution S(x* | x) is symmetric. (Notice that here we refer to a “global”
version of these distributions, not to “local” ones that update dimensions
individually, as in the lecture notes).

(b.) (5 points) Why would you think that the Boltzmann acceptance
function is used more rarely than the Metropolis acceptance function?

(c.) (10 points) Find some other acceptance function which gives de-
tailed balance in conjunction with a symmetric proposal distribution, and
which is different from either the Boltzmann or the Metropolis acceptance
function (prove detailed balance!).

Solution. (a.) We have to show that g(x)A(x* | x)S(x* | x) = g(x*)A(x |
x*)S(x | x*). This follows immediately from (1) by an elementary 1-step



transformation, using symmetry of S.

(b.) One reason may be the close ties that the Metropolis acceptance
function enjoys with statistical physics, which makes it so nicely inter-
pretable as an energy game and which also connects it to simulated an-
nealing. Another (likely more important) reason is that the Boltzmann ac-
ceptance function always yields a lower accepting rate than the Metropolis
acceptance function, and is thus more expensive.

(c.) The easiest way to obtain a new proposal distribution is by lin-
ear mixing from the Boltzmann and Metropolis distributions. Details are
straightforward and omitted here.

Problem 4. (20 points, challenge: formalization of real-world items
for simulated annealing.) This is a simulated annealing design task.
Each semester, the registrar’s office has to create a schedule for the courses,
assigning a time and a room to each course. There are numerous side-
conditions, some strict (e.g., two courses must not be scheduled to the same
room at the same time), some only “gradual” (e.g., professor A prefers not to
have courses at 14:15 because he usually fetches his kids from school around
that time). Finding a good schedule that observes all strict constraints and a
close-to-optimal negotiation between the softer constraints is a demanding
combinatorial optimization problem, and simulated annealing is one way
to approach it. Your task: sketch out some essentials of how to set up a
simulated annealing optimization of this task. Specifically, give an account
of the following points.

1. (7 points) What are the microstates in this task? Give a formal spec-
ification, introducing relevant variables in words. You may assume
that the schedule is weekly-periodic.

2. (7 points) The cost function here will be designed as a sum of various
components, each of which takes care of one constraint. One of these
might be, it is desirable to distribute the sessions of one course rather
evenly over the week, not lumping them closely together. Start from the
formalism that you introduced to describe microstates, and formalize
a sum term in the cost function that would take care of this constraint.

3. (6 points) One way to ensure that the strict constraints are never
violated is to assign an infinite cost to them. This is theoretically
possible, but dangerous; if infinite cost terms are used, greatest care
has to be used when defining the proposal distribution. Why?



Solution. 1. Let S be the set of weekly sessions that have to be sched-
uled (that is, for each course that has n weekly sessions, S contains n el-
ements), T be the set of time slots over the entire week, and L the set of
possible locations. All of these are finite sets. A microstate is a mapping
s: S8 — T x L, where it is a matter of convention whether one requires that
s is injective or not (non-injective s clearly would make useless schedules,
but might be handy in simulated annealing as states that can be used to
“bridge” different areas of the state space, ensuring ergodicity).

2. One way to go: for the sessions of one course, introduce a penalty
that is inversely proportional to the minimum time lag between two sessions
in a week. To make this formal, let C' be the set of courses, and ¢: S — C
the labelling of sessions by the courses, and t : S — T the assignment of
sessions to times. Let minInterval be the function that assigns to any finite,
nonempty set of times in a week the shortest time lag between two times in
the set if the set of times contains at least two times, and the duration of
an entire week if the set contains only one time. Then, a cost function term
that captures the soft constraint might be

1
% minInterval(¢t(c=1(z)))

3. The danger lies in the fact that states to which infinite costs are as-
signed can never be reached by the simulated annealing state search; they
are insurmountable energy barriers. If they are used, the design of the pro-
posal function must ensure that between every pair of finite-cost states there
is a sequence of other finite-cost states, generateble by iterated proposals,
to ensure ergodicity. This may be hard to verify.

Problem 5. (30 points, challenge: clear mathematical understand-
ing of simulated annealing basics) Assume that simulated annealing is
used to find the lowest-energy state in a system that has (only) three states
s1, 82,83, where E(s1) = 0, E(s2) = 1, E(s3) = —oo. The search is started
from s;. The proposal distribution is given by the following transition ma-
trix Sl'j = S(Sj | SZ')Z

1/2 1/2 0
0 1/2 1/2

a. (15 points) Give the transition kernel T'(s; | s;) (at some fixed temper-
ature T') for the simulated annealing process which results from this setup.



Concretely, provide a 3 x 3 transition probability matrix. b. (15 points)
Give a non-trivial upper bound for the probability to reach state s3 within
n steps, after a start in s1, at a temperature 7.

Solution. a. First observation: at all transitions ¢j where S;; = 0, also
T(sj | s;) =0. The sy — sy transition is “energetically uphill”, so the tran-
sition probability T'(sy | s1) is the product of the proposal probability (which
is 1/2) with the acceptance probability, which is exp(AE/T) = exp(—1/T).
The reverse direction transition probability T'(s; | s2) is equal to the pro-
posal probability, i.e. is 1/2, because this transition is “energetically down-
hill” and acceptance is certain. The probability to transit from s3 to so is
zero because the jump would be “energetically infinitely far uphill”. Ob-
serving that rows in the matrix of T'(s; | s;) must sum to 1, we get from
these findings

1—Lexp(—1/T) 3exp(-1/T) 0
T(s; | s5) = 1/2 0 1/2
0 0 1

b. The precise probability P(1,3,n) to reach s3 from s; within n steps,
at a temperature 7', would be T™(1,3), where T' is the transition matrix
from a.. However, this is not easily written in closed form. A relevant upper
bound can however be given by observing that P(1,3,n) <1 — P(within n
steps, so is never entered from s;). This leads to a bound

P(1,3,n) <1—(1— %exp(—uT))"*l.



