Multifunctionality: a fundamental property of behavior mechanisms
based on dynamical systems

Herbert Jaeger

GMD, Sankt Augustin, Germany
herbert.jaeger@gmd.de

Abstract

The mechanisms supporting robot behaviors are
increasingly often designed as dynamical systems.
Such mechanisms are inherently multifunctional. This
means that they can exhibit different qualitative be-
havior in different circumstances. Multifunctionality
makes system design difficult. On the other hand, it
may be beneficial for adaptiveness, since it allows qual-
itative changes in a robot’s behaviors without chang-
ing the supporting mechanisms.

1. Introduction

The “behavior based” approach to designing mobile
robots (Brooks, 1991) has been very fertile. However, a
formal theoretical foundation, comparable to the role of
logics in traditional AI, has been lacking in the begin-
ning. A promising road toward such a theoretical foun-
dation is to view agents as dynamical systems (Beer,
1997)(Steinhage and Schoner, 1997). This perspective is
also being developed in cognitive science (van Gelder
and Port, 1995). In these approaches, agents (animals,
humans, or robots) are described with formalisms which
lend themselves to an analysis in terms of dynamical sys-
tems theory. Such formalisms include differential equa-
tions (e.g., (Jaeger and Christaller, 1998)(Large et al.,
1997)), recurrent neural networks (e.g. (Beer, 1995)),
and stochastic automata (e.g. (Baasye et al., 1995)). The
most common kind of formal analyis concerns the de-
scription of attractor structures emerging from learn-
ing or evolution (e.g. (Robertson et al., 1993)(Smithers,
1995)).

In the present article I wish to point out a basic prop-
erty of dynamical-systems based robots, namely, the in-
herent multifunctionality of input-driven dynamical sys-
tems. I shall demonstrate the ubiquity of this property,
and discuss the difficulties as well as the chances that it
might afford.

First, a clarification of terminology. By the term func-
tionality, 1 refer to a combination of a mechanism with
a particular purpose. In the context of this article, I deal
with computational mechanisms. Examples are all kinds
of functions and algorithms, dynamical systems, neural
networks, etc., when they are physically implemented on
a robot. There, they (usually) serve a particular purpose,

e.g. extracting features from a sensor signal, or producing
a base oscillation for a leg controller, etc. Multifunction-
ality refers to the fact that a particular mechanism can
serve many purposes.

This fact is well known. It has been referred to
under various names, e.g. “relative systems” (Shimizu,
1993), “functional indeterminacy”, and “multifunction-
ality” (Pasemann, 1994).

The multifunctionality described by those authors re-
sults from bifurcations. In this article, I wish to point out
that multifunctionality even arises without bifurcations,
due to nonlinearities and exchanges in relative timescales
of system inputs.

In order to illustrate this fact, I shall describe a “push-
ing boxes” behavior of a robot, which was programmed
as a dynamical system according to the “dual dynam-
ics” design scheme (section 2). The behavior is ruled by
simple differential equations. One of them is inspected in
section 3, where I describe how the differential equation
serves a particular purpose in the robot. In section 4 I
will show that the same equations may support different
functionalities when fed with different input. In the final
discussion section I argue that this kind of multifunc-
tionality may turn out to be beneficial for adaptiveness,
although it presents difficulties for design.

2. Background: dual dynamics and the
Black Knight

I start this section with a brief introduction to the “dual
dynamics” (DD) scheme. A more detailed account can
be found in (Jaeger and Christaller, 1998).

DD is a formal scheme for designing behavior control
systems for mobile robots. The scheme prescribes how
to specify a collection of behaviors as a comprehensive
dynamical system. It consists of many coupled subsys-
tems, each of which is responsible for controlling a par-
ticular behavior. These behavior subsystems are specified
through ordinary differential equations.

Like in many behavior-oriented control architectures,
behaviors are ordered in levels in the DD scheme, too.
At the bottom level of a DD behavior hierarchy, one
finds elementary behaviors. These are sensomotoric co-
ordinations with direct access to external sensor data

and actuators. Typical examples are move_forward and
turn_left. Higher levels are constituted by increasingly
comprehensive behaviors. They also have access to sen-
soric information but cannot directly activate actuators.
Typical examples are work and replenish_energy.

Elementary behaviors are different from higher-level
behaviors in that they are made from two subsystems,
which serve different purposes. This has given the ap-
proach its name, “dual dynamics”.

The first of these subsystems is called the target dy-
namics. It calculates target trajectories for all actuators
which are relevant for the particular behavior. Its out-
put consists of as many variables as there are degrees of
freedom to be controlled.

A requirement for the target dynamics is that this sys-
tem must not undergo bifurcations. This is what makes
elementary behaviors elementary. For instance, the tar-
get trajectories of turn_left in a simple 2-wheeled robot,
which moves on a flat surface, are likely to remain qual-
itatively unchanged in different instances of the maneu-
ver. Thus, turn_left would be a good candidate for an
elementary behavior in such a simple robot. By contrast,
in a walking machine which has to cope with different
surfaces, it is likely that there will be qualitatively differ-
ent maneuvers for turning left in different circumstances.
Each of them would thus yield a separate elementary be-
havior.

The other subsystem of an elementary behavior is its
activation dynamics. It regulates a single variable, the
behavior’s activation. The equation ruling this variable
should be written in a way that the variable displays a
dynamic range between 0 and 1. A value of 1 means that
the behavior is fully active, whereas 0 means that it is
completely inhibited.

The activation dynamics is allowed to undergo bi-
furcations. The control parameters which induce these
bifurcations are the activation variables of higher-level
behaviors. This is the core idea behind DD. The ways of
how, exactly, these bifurcations are induced by changing
control parameters, are highly constrained by the DD
formalism. These constraints and the fact that bifurca-
tions are confined to the one-dimensional activation dy-
namics subsystems, warrants the transparency of the DD
design scheme.

I would like to emphasise that an elementary behav-
ior is not “called to execute” from higher levels. The level
of elementary behaviors is fully operative on its own and
would continue to work even if the higher levels were cut
off. The effect of higher levels is not to “select actions”,
but to change the overall characteristics of the elemen-
tary level, by inducing bifurcations in that level.

This concludes the introduction to DD. In the remain-
der of the section, I sketch the Black Knight (BK) robot
and its pushbox behavior.

BK (now deceased) was a typical 2-df robot made

from Lego bricks. It was built and maintained at the
VUB AI Lab! by Peter Stuer and Dany Vereertbrug-
ghen. Programming was done using the PDL program-
ming language, which was also developed at the VUB Al
Lab. PDL is well suited to implement control systems
written in differential equations?.

BK’s basic set of tasks is to wander around in an
arena limited by plywood walls; avoiding obstacles while
wandering; knocking into light-emitting “pushboxes”;
and recharging at a power station when the batteries
run low. Fig. 2 shows a view of this setup.

Figure 1 The Black Knight approaching the charging station
(brightly lit construction). A pushbox emitting a thin hori-
zontal line of red light is seen at the right.

One of BK’s behaviors is to “work” by reapeatedly
knocking into one of several cylindrical pushboxes scat-
tered in the arena. The pushboxes emit a modulated red
light. BK can distinguish pushboxes from other light-
sources due to this modulation. When a pushbox is
knocked repeatedly, it gradually dims its light until it
cannot longer be recognised by BK. A typical pushbox
episode proceeds in three phases: (i) the robot gets
into recognition distance of a light-emitting pushbox,
and steers toward it, (ii) then drives head-on into it (a
“knock”), retracts a bit, and repeats a few times until
(iii) the pushbox is almost completely dimmed, thereby
becoming an ordinary obstacle, from which the robot
turns away.

3. A closer look at the pushing boxes
behavior

In this section I explain the activation dynamics of the
pushbox behavior, a simple differential equation which

! http://arti.vub.ac.be/ cyrano/robot_home.html

2 The implementation was done for teaching purposes and
is richly documented. It
is obtainable at http://www.gmd.de/People/Herbert.Jae-
ger /Resources.html

successfully served its intended purpose. However, in the
next section it will turn out that this simple equation
might support quite different functionalities, too.

The activation dynamics has two kinds of inputs. One
kind of input enables the pushbox behavior to detect the
pushboxes by virtue of the modulated light they emit.
More specifically, the readings of the narrow-angled and
wide-angled photodiodes are preprocessed to yield two
signals M; and M,., which roughly correspond to “mod-
ulated red light is seen at the left (right, respectively)
before the robot”. Furthermore, while M; and M, rise
sharply with modulated light influx, they decay expo-
nentially, providing a kind of “afterimage” or “short-term
memory” effect.

M; and M, are used to alert the pushbox behavior
by switching on its activation, when even only a little
modulated light is seen. Technically, in the activation
dynamics (1) the sum M;+ M, is fed into a steep sigmoid
o which essentially returns 1 when M; + M, rises over a
certain small threshold, and returns 0 otherwise.

Apbz = 20- Awork . (U(Ml + MT) - APbI)
+decayterm (1)

The other input into the activation dynamics is the
activation Ao, of the work behavior. Mathematically,
it appears as a factor. If the work behavior is not active,
then Ao = 0, and (1) is dominated by the decay term.
Intuitively, that means that when BK is not in working
mood, it will not be tempted by pushboxes. If, however,
the activation of work is high (i.e., about 1), then the
dynamics of (1) is dominated by the main term (o (M;+
M,) — Apps). This term makes Ay, follow o(M; + M,.).
Since the latter term basically can attain the values 0 and
1 due to the sigmoid, the resulting overall dynamics of
(1), when work is activated, is a soft “toggling” between
0 and 1. This toggling switch is triggered when M;+ M,
rises/falls over/under the small threshold of 0.03, which
is the switching point of the sigmoid o.

Figure 2 depicts a typical pushbox episode, recorded
when BK was in working “mood” (i.e., when Ay, was
about 1). The variable Ry, is the signal issued to the
right motor by the target dynamics of the pushbox be-
havior. It is given in the figure to indicate BK’s motor
action during that pushbox episode, which consisted in
an initial right curve for the first approach until the first
knock, followed by a back-and-forth maneuver for the
second knock, and a final retraction from the pushbox
after it became invisible. The activation App, quickly
went to 1 when M, started to climb, and quickly fell
to 0 after modulated light “afterimages” had died out.
In sum, the dynamics specified in (1) behaved in the way
it was supposed to behave, namely, as a “toggle switch”
for Appg.

M_r
M_I
R_phx
A_phx

Figure 2 A trace of a pushbox episode comrpising two
knocks. Duration is approximately 8 seconds. For variables
see text.

4. Other functionalities supported by the
mechanism

Now I shall re-consider equation (1) and list some func-
tionalities which it might assume, other than the toggling
functionality just described. In each case, I briefly state
what characteristics the input into (1) must have, in or-
der to make (1) assume that functionality.

Since the names of variables in (1) refer to the func-
tionality within BK it is better to rename them, in order
to avoid confusion. For the sake of simplicity, I also join
M;+ M, into a single variable. This gives the following
condensed version of (1):

& = 20-a-(o(b) — x) + decayterm (2)

With a little experience in analysing differential equa-
tions, one will find it easy to detect many other function-
alities (2) might acquire, besides the ”toggling switch”
characteristics. Here is a list of some of them:

Low-pass filter. Assume again that a remains fixed at

1, and that b is a signal of mixed frequencies with a
small amplitude averaging at a value of 0.03, i.e. the
threshold of o.
In these circumstances, (2) works as a low-pass filter.
Roughly, frequencies with a period greater than 1/20
will be suppressed, while lower frequencies will be
followed by .

Adaptable low-pass filter. Just like before, assume
that input b is a signal of mixed frequencies. How-
ever, this time allow a to take various values between
0.1 and 10.

Then, (2) works as a low-pass filter like before, but
with cutoff frequencies set by a in a period range
from 1/2 to 1/200.

Signal amplifier. Again, let a be fixed at 1. Assume
that b is a weak signal which slowly (relative to time
increments of 1/20) varies in a range of 0.03 £ 0.001.
In this context, the mechanism (2) will appear as an
amplifier, with z following the input signal in a range
of 0.5 + 0.001 xS, where S is the steepness of o.

Leaky spike integration. Assume that ¢ = b, and

that b is some kind of “spiking” signal, i.e. it con-
sists of short pulses, separated by refractory peri-
ods, which are long compared to spike duration, and
where the signal is zero. Assume further that spike
duration is shorter by at least an order of magnitude
than 1/20 time units, and that the length of the re-
fractory period is of the same order of magnitude as
the time constant of the decay term in (2).
Under these conditions, (2) works as a leaky integra-
tor of spikes. More concretely, the current value of x
will measure the average number of spikes which oc-
cured in the past, with more recent spikes weighted
stronger. The measurement is highly nonlinear, sat-
urating at a value of 1.

Two factors are crucial for multifunctionality in these
examples, namely, nonlinearities (represented by the sig-
moid in (2)), and changes in relative timescales of a vs. b
vs. the decay term vs. the overal system time scale fixed
by the time constant 20.

Note that through all these examples, (2) does not
bifurcate: the phase portraits of the system are charac-
terised by a single point attractor through all variations
of input, in all examples.

5. Discussion

The preceding sections illustrate that even simple dy-
namical systems can support different functionalities.
These differences in functionalities need not result from
bifurcations, but can arise from different characteristics
of system input only. If bifurcations were included into
the picture, multifunctionality would become even more
pervasive.

Multifunctionality obviously makes a dynamical-
systems oriented design more difficult, compared to de-
sign schemes which rely on functions in the mathematical
sense, like e.g. typical C procedures or feedforward neu-
ral networks. Likewise, recurrent neural networks (which
are dynamical systems) are notoriously more difficult to
train than feedforward networks. A designer, who wishes
to obtain a specific input-output trajectory from a dif-
ferential equation, has to take into account the system’s
internal state evolution, which is connected to the de-
sired IO-characteristics in no generally treatable way.
Furthermore, the designer has to be careful about the
exact dynamical properties and timescales of inputs, in
order to fish a particular functionality from the reservoir
of potential functionalites of a dynamical system.

Considering these problems, what reasons are there
for using dynamical systems? One obvious advantage of
dynamical systems is that they are intrinsically temporal
formalisms (detailed discussion in (van Gelder, 1998)).
This renders them natural for achieving functionalities
which are time-sensitive, in particular, for motor control;
and renders them charming for researchers who believe
that cognition grows out of bodily activity. However, I
will not further this aspect here, but instead point out
another possible advantage of dynamical systems.

Multifunctionality of mechanisms affords a robot with
a reservoir of novel ways of behaving. As I hope to have
demonstrated, this reservoir is a rich one. A strategy for
a robot to exploit multifunctionality might consist of the
following three steps: (i) get into novel situations, e.g. by
playing or exploration, (ii) discover that the behavior-
generating mechanisms respond in novel ways due to
multifunctionality, and (iii) reinforce and memorise novel
responses if they are beneficial, and replay them when
similar situations occur. I would call this a discover-and-
memorise strategy for generating adaptive novel behav-
iors.

Obtaining new functionalities by a discover-and-
memorise strategy should be compared to the more fa-
miliar way of obtaining novel functionalities, namely, by
evolutionary strategies. I use here the term “evolution-
ary” in a broad sense, to denote any scheme which first
randomly modifies an existing system and then tests the
result by evaluating the resulting fitness. Evolutionary
schemes for finding new functionalities do not necessarily
require many generations of agents, but can work inside
a single agent (e.g., (Steels, 1997)).

A big difference between discover-and-memorise vs.
modify-and-test strategies is that in the former, an
already existing (but dormant) reservoir of mnovelty
is tapped, whereas in the latter, novel functionalities
are added to the system. Conversely, this entails that
discover-and-memorise leaves existing functionalities in-
tact, whereas modify-and-test may be destructive. Thus,
the former seems intrinsically safer than the latter. It
might also be faster since new functionalities are har-
vested together with the situations in which they arise.
By contrast, modify-and-test is apt to produce unde-
tectable functionalities for situations which will never
occur.

One price to be payed for the benefits of multifunc-
tionality is that it may be difficult to keep subsystems
within the operative range of a particular functionality.
Keeping multifunctionality within bounds may be one of
the reasons why homeostasis is so important in animals.

To my knowledge, a discover-and-memorise strategy
capitalising on multifunctionality has not yet been real-
ized on a robot. A prerequisite for investigations in that
direction is to be able to program robots on a dynamical
systems basis in a convenient fashion. The dual dynamics

design scheme is a step toward that goal.

Acknowledgments. I wish to express my deep grat-
itude to Luc Steels, Peter Stuer and Dany Vereertbrug-
ghen at the VUB AI Lab. Thanks to Tim van Gelder
for insightful discussions, and an anonymous reviewer for
very helpful comments. The work described in this arti-
cle was mostly carried out under a postdoc grant from
GMD, Sankt Augustin.

References

Baasye, K., Dean, T., and Kaelbling, L. (1995). Learning dy-
namics: System identification for perceptually challenged
agents. Artificial Intelligence, 72:139-171.

Beer, R. (1995). A dynamical systems perspective on
agent-environment interaction. Artificial Intelligence,
72(1/2):173-216.

Beer, R. (1997). The dynamics of adaptive behavior: a
research program. Robotics and Autonomous Systems,
20:257-289.

Brooks, R. A. (1991). Intelligence without reason. A.i. memo
1293, ftp’able at http://www.ai.mit.edu/, MIT AI Lab.

Jaeger, H. and Christaller, T. (1998). Dual dynamics: Design-
ing behavior systems for autonomous robots. To appear
in Artificial Life and Robotics.

Large, E., Christensen, H., and Bajcsy, R. (1997). Scaling the
dynamic approach to autonomous path planning: plan-
ning horizon dynamics. In Pollack, M., editor, Proceedings
of IJCAI-97, Vol. 2, pages 1360-1365. Morgan Kaufmann.

Pasemann, F. (1994). Neuromodules: A dynamical systems
approach to brain modelling. In Herrman, H., Wolf, D.,
and Poppel, E., editors, Proceedings of the Workshop:
Supercomputing in Brain Research — from Tomography
to Neural Networks,, pages 331-348. HLRZ, KFA Jiilich,
Germany, World Scientific.

Robertson, S., Cohen, A., and Mayer-Kress, G. (1993). Be-
havioral chaos: Behind the metaphor. In Smith, L. and
Thelen, E., editors, A Dynamic Systems Approach to De-
velopment: Applications, pages 119-150. Bradford/MIT
Press, Cambridge, Mass.

Shimizu, H. (1993). Biological autonomy: The self-creation
of constraints. Applied Mathematics and Computation,
56:177-201.

Smithers, T. (1995). On quantitative performance measures
of robot behavior. Robotics and Autonomous Systems,
15(1/2):107-134.

Steels, L. (1997). Synthesising the origins of language and
meaning using co-evolution, self-organization, and level
formation. In Hurford, J., editor, Evolution of Human
Language. Edinburgh University Press, Edinburgh.

Steinhage, A. and Schéner, G. (1997). Self-calibration based
on invariant view recognition: Dynamic approach to nav-
igation. Robotics & Autonomous Systems, 20(2-4):133—
156.

van Gelder, T. (1998). The dynamical hypothesis in cognitive
science. To appear in Behavioural and Brain Sciences.

van Gelder, T. and Port, R., editors (1995). Mind as Mo-
tion: Explorations in the Dynamics of Cognition. Brad-
ford/MIT Press.

