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Abstract

Automatic Language Identification (LID) refers to the problem of recognizing the language
spoken in an utterance sample by a computer system, and it is part of the continuous
research efforts in the improvement of human-computer interaction. The complexity of
the task rests in the degree of specialization required: from phonologists and linguists
creating language models, to sound engineers extracting meaningful signal features from
the audio sample and to computer scientists assembling the pieces to obtain a classifier
model.

Echo State Networks (ESN) are a variation of the Recurrent Neural Networks (RNN),
which preserve the short-term memory property of RNNs without the computational com-
plexity of training such a network, with the condition that certain restrictions are set.
Through their practical nature and easy implementation ESNs have attracted consider-
able interest and have been applied successfully in engineering applications and domains
such as communications, pattern generation (e.g. robot modelling, medical analysis), dy-
namical pattern recognition (e.g. speech recognition), prediction of time series (e.g. stock
markets).

This guided research aims to develop an ESN-based classifier for the LID problem. The
motivation behind using ESNs rests in their ability to successfully model temporal se-
qguences, i.e. speech sequences for the current task, and consequently provide a fast
and efficient alternative approach to other LID proposed solutions.
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1 Introduction

In machine learning many applications employ feed-forward neural structures which are
well understood due in part to their non-dynamic nature. Temporal problems can also be
solved through feed-forward networks, however generally in such models many parame-
ters are needed and time is not represented in a ’natural’ way [1]. A different approach
would be using Recurrent Neural Networks which are biologically inspired models, built
on top of feed-forward neural networks by adding recurrent network connections between
its internal neurons transforming the system into a non-linear dynamical system.

Theoretical results have shown that RNNs can approximate arbitrary finite state automata
and dynamical systems with arbitrary precision (“universal approximators”) [2]. While
RNN might seem capable to model complex temporal tasks, practical difficulties have
limited its possible applications, albeit it is worth mentioning that advances in deep learn-
ing over the last few years have reduced some of these difficulties. One of the main issues
RNN practitioners face is the problem of the "fading gradient” where small changes to the
RNN’s parameters can lead to non-converging weights [3]. Other issues include, but are
not limited to: slow learning, high complexity, hard long-time learning (a possible solution
to this would to use a Long Short Term Memory - LSTM architecture, though it doesn’t
always outperform time delayed neural networks) [1]. Even if the number of neurons in
the RNN is reduced to improve the computational efficiency, the expressive power coming
from the dynamics of the model is reduced as well.

Reservoir Computing (RC) proposes a different way of understanding and using RNNSs,
its core idea being to separate the recurrent part (reservoir) and the readouts. Echo
State Networks and Liquid State Machines are the main initiators of RC, and although
their origins are different both of them assume that if the RNN part of the model satisfies
certain criteria, supervised updates of all the weights is unnecessary and training the
readout should be enough to provide good results for the respective task [1][3].

The properties of echo state networks make them convenient to use in many temporal
data applications. Such properties (which will be described in the following sections) also
motivated the current research topic: to develop an ESN based classifier for the automatic
language identification problem (LID).

Automatic Language Identification (LID as it is commonly known in the literature) is the
problem of recognizing the language uttered in a speech sample, by an unknown speaker
(i.e. no prior information about the speaker is available). LID is a part of the broader
speech recognition area and it has been highly researched over the last few decades and
continues to be as new classifier models are developed and new feature selectors are
built [4].

There are multiple applications for automatic language identification, for example hotel
checking, call redirection in cases where the caller is not a native in the language spoken
by the operator (in emergency situations this would be of great importance), and it can
serve as input for the speech translation models, which once they know the languages
with highest probabilities to match the target speech language they can chose the right
model accordingly [4].

The current document is structured as follows. Section 2 describes the research problem
and the research objectives in detail, by providing relevant information of the topic from
previous literature and an in-depth look into the ESN structure. Section 3 presents the
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Figure 1: General ESN layout, dashed lines represent trainable connections. Figure taken
from [8].

experimental setup as well as the theoretical considerations behind it. Afterwards Section
4 outlines the results of the experiments. The concluding remarks and suggestions for
future research are provided in Section 5 and Section 6, respectively.

2 Statement and Motivation of Research

2.1 ESN: General Structure

Echo State Networks (ESN) were developed as a computationally feasible alternative to
more general approaches involving Recurrent Neural Networks (RNN) and represent the
focus in many research areas and practical applications.

As argued in [2] and [5], ESNs are faster to train and easier to use than other RNNs based
structures while successfully being able to model temporal data, some of its applications
being described in [1] and [6].

The following section will present the general structure of an ESN as expressed in [5]
and [7], explaining the intuition behind its parameter settings, describing the reservoir
update equations and the readout training process. The explanations will be focused on
gradually deriving a general ESN classifier for temporal sequences. An example of an
ESN layout can be seen in Figure 1.

The central part of an ESN is the reservoir, a randomly generated, recurrent neural net-
work which primarily serves two functions. The first consists in a non-linear expansion of
the input feature sequence into a higher feature space. In a classification task that would
imply that if the data input u(n) is not linearly separable in its initial feature space RV«,
they could become linearly separable in the space R™= spanned by the states =(n) (i.e.
neurons) of the reservoir. Since the weights of the reservoir are not changed during the
sampling phase [5] the size of the reservoir can easily be increased with little additional
computational costs, however in practice the size of the reservoir is chosen with respect
to the complexity of the task. The second function of the reservoir is to provide temporal
context, the short term memory capability of ESNs being the reason why they are able to
model temporal tasks [5][&].

Both functions should provide a comprehensive signal space in z(n) such that y!9¢ (n)
(the output layer) could be written as a linear combination of z(n). These are the update
equations for a typical ESN reservoir using leaking-integrated neurons [6]:



Z(n) = tanh(W™[1 : u(n)] + Wz(n — 1))
z(n) =1 —-a)x(n—1)+ ax(n)

Here n represents discrete time, W ¢ RN=x(Nut1) the input connection matrix, W &
RN=xN= the reservoir weights, 7(n) the updated reservoir state’s activations and « is the
leaking rate, which in essence quantifies the speed at which the dynamics of the reservoir
change in time [7].

The update equations could be further changed based on the type of task, teacher forcing
could be included where the output is sent as feedback into the reservoir and/or a bias
(noise) vector. For the LID task specifically the update equations used preserved the
form described above. Other aspects to consider when modelling an ESN are the initial
removal of training data due to initial transients, the input connection matrix scaling, and
the spectral radius of the reservoir weight matrix to control the dynamics of the system
and preserve the echo state property which can be roughly put as fading memory of the
input [3]. The general flow of operations in an ESN is provided in Figure 2.
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Figure 2: The flow in an ESN model. Figure taken from [7].

The linear readout is given by the equation:

y(n) = Wz (n)

Here y(n) € R™v is the activation of the neurons in the output layer, and z(n) the acti-
vations of the reservoir neurons. W°“ ¢ RNv*Nz is the output weight matrix trained to
optimize the least square error:

Bl ) = 5 3 S ln) =/ )

T describes the sequence length and NV, the dimension size of the output layer. Since at
this moment we deal with a linear partitioning problem, linear regression can be applied,
but in order to allow for regularization and avoid numerical instability caused by large W°"*
values ridge regression [6] is used instead (presented below in matrix form):

WOUt = Y;fz:'rgetX(XTX + ’YI)_I



X e RNexNz rgpresents the collected state activations during the sampling phase where
N, is the number of collected states, I the identity matrix, v the regularization parameter
and Yiarger € RYe*MNu is the matrix storing the training data.

In a classification task the output’s dimension is equal to the number of classes and
ytar9et(n) is created to store 1 in the dimension corresponding to the correct class and 0
for the other classes. The class for a single input sequence u(n) is decided by:

1
class(u(n)) = argmax <; ;yk(n)> = argm]?x((z Y))
Where 7 is an integration constant (typically the length of the input sequence u(n)), and
>y is y(n) time-averaged over 7 [7]. A different version of this equation will be used for
deciding the class of an input sequence for the LID task, and it is further described in
Section 3.

2.2 The Language Identification Problem

This section will present a short overview of the Language Identification Problem firstly
by providing background context of this area of research, secondly by describing the
key characteristics of the problem and lastly by discussing representative approaches in
solving this task.

Languages have distinct sound patterns and their detection and comparison are the key in
solving the language identification problem. Such cues or characteristics that differentiate
between languages are divided in the literature in [4][9][10]:

e cepstral coefficients (based on analyzing the power spectrum of the speech signal)
e acoustic (i.e. phone occurrence frequency per language)

e prosodic (i.e. duration of phones, pitch contours). For example tonal languages
like Mandarin and Viethamese have different pronunciation characteristics than stress
languages like English.

e phonotactics are the rules governing the combination of acceptable phones in a lan-
guage (i.e. legal clusters of phones or phonemes)

e lexical (i.e. the vocabulary of a language)

Individual sounds which are not contained among the phonemes of other languages, like
the ’clicks’ in sub-Saharan African languages or other unique features can be further
integrated [4].

In the next part there will be a short discussion on the features used in speech recognition
systems with an emphasis on the mel-frequency cepstral coefficients (MFCC) since the
current research method proposed will primarily be using such coefficients as features
for the ESN classifier.

Cepstral based features such as MFCC and RASTA-PLP (an acronym for Relative Spec-
tral Transform - Perceptual Linear Prediction) are some of the most known and widely
used features in automatic language identification [11]. In essence cepstral based fea-
tures extract the magnitudes of the frequency bands’ energies over the speech spectrum.
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Figure 3: LID system with multiple phone recognizers in parallel. Figure taken from [10].

Previous comparison between MFCC and its alternative has shown little difference in
performance when using one or the other, because they practically encode the same
information [12]. The current research will focus solely on MFCC as its cepstral features
of choice and additional features to be considered will be introduced in later sections.

Several methods have been proposed and applied with success in the automatic lan-
guage identification problem. A standard approach can be considered the Gaussian Mix-
ture Model (GMM) classification using shifted delta coefficients (SDC) features, with the
GMM modelling the acoustic characteristics of a language [9]. In the GMM assumption,
each feature vector v, at frame ¢ is considered to be randomly sampled from a probability
density of multi-variate gaussian densities [11]. A GMM-UBM is a popular variation on the
GMM classification, where UBM (Universal Background Model) is a large GMM trained
to represent the speaker-independent distribution of features. Concretely, it is aimed for
speech selection that relates to the expected speech during the recognition task [13].

Given that languages have different phone collections, there are many LID approaches
which focus on phone recognizer systems that hypothesize what phones are uttered in
a sample sequence and determine the language by analysing the statistics of the phone
sequence [10]. n-gram PRLM (Phone Recognition followed by Language Modelling) type
approaches involve tokenizing training messages in each language / through a single
phone language recognizer and after each symbol sequence is obtained, an n-gram
LM(Language Model) probability distribution is generated for each language (typically
the sequence information is modelled through HMMs) [11]. From such a language de-
pendent phone recognizer one can construct a multi-lingual phone recognizer by using
as frontend preprocessing multiple recognizers [11]. The idea is to run multiple PRLM
systems in parallel (P-PRLM) with each single language phone recognition trained on a
different language. These are derived either by a mixture of language-dependent and
language-independent phones or directly obtained from the training data. An example of
such a system is presented in Figure 3.

The bag-of-sounds method differs from the P-PRLM method in that it uses a universal
recognizer, which tokenizes the speech sample into a sound symbol sequence, and the
obtained symbol sequence is converted into a count vector (bag-of-sounds) [9].

P-PRLM and GMM based approaches involve methods for the estimation of the class-
conditional distributions. A different idea consists in applying a discriminative SVM clas-
sifier with a Linear Discriminant Sequence kernel that expands into feature space using
monomial basis. This approach is described in more detail in [14][15].

Apart from the well-established approaches other methods rely on the usage of Neural
Networks with phonotactic and prosodic features [16] and, more recently, due to ad-



vances in acoustic modelling, Deep Neural Networks (DNN) [17]. Current automatic lan-
guage identification methods [18][19] make use of the popular i-vector based acoustic
systems, which represent each utterance as a low-dimensional feature vector [20]. A de-
scription of a DNN architecture using i-vector feature vectors and a comparison against
other classification methods which are using such features as well is presented in [17].

2.3 Research Objectives

The main objective of the current research is to develop and train an ESN classifier for
the language identification problem.

ESNs have been used successfully for pattern generation, for prediction systems and for
classification, one of the goals of this research being to test the potential of ESNs in a
complex classification task. Examples where they were used for classification purposes
include:

¢ analysis of deterministic dynamics in the motion of real biological beings in a closed
environment and their classification based on the identified motion [21],

e time series classification in medical tasks such as predicting dialysis in critically ill
patients [22].

Some of the factors which recommend ESN as a classifier are: high dimensional non-
linear transformation of the input feature vectors, short-term memory capability to model
sequential data, control of the dynamics of the system via 'metaparameters’ (spectral
radius, leaking rate, reservoir size and connectivity etc.), and inexpensive training com-
putation when compared to other RNN models, by far more difficult to train and use.

Taking into account the motivation behind using ESN as a classifier for the LID problem,
the main objectives of the current research are:

e to develop a robust ESN classifier for the LID problem using MFCC features and to
identify "optimal’ parameter settings to improve overall performance,

¢ to combine MFCC and shifted delta coefficients (SDC) which provide additional infor-
mation on the rate of change of the MFCC features at time t in the input signal,

e to integrate prosodic features, like pitch and loudness and fuse them together with
the MFCC features to obtain a new model,

e comparing the best parameter configurations obtained of the developed classifier
models by measuring their accuracy, precision, recall, and Macro F1 scores on differently
sized datasets,

e identifying the ESN parameters that contribute the most in improving the performance
of the models as well as provide theoretical insights behind their influence.

3 Conducted Experiments

The following section will present each component of the developed models essential to
address the research objectives listed in Section 2.3. It will provide theoretical insights
and details on the practical implementation for a concrete understanding of the system.
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As a short technical overview the ESN classifier toolbox for the current research task is
highly modularized, consisting of separate parts for data preprocessing, feature extrac-
tors, reservoir construction, readout classification, and efficient multiprocessing capability
for testing multiple parameter configurations in order to create a robust environment for
analysis and for further functionality that can potentially be added in the future.

3.1 Features

For the current research task 3 main models were developed and analysed, each of them
distinguishable by the features used:

e the basic model based solely on MFCC features,

e the 2"¢ model which integrated shifted delta coefficients in conjunction with using
MFCC features,

e the 3" model which integrated prosodic features such as loudness and pitch on top
of the MFCC features.

3.1.1 Mel-frequency cepstral coefficients (MFCC)

An important element in understanding speech is that sounds are produced (or filtered)
by the shape of the vocal tract. This shape is encoded in the envelope of the short time
power spectrum, and MFCC accurately represent this envelope.

A high level overview on the steps required for MFCC extraction is given below:
e frame the signal into multiple windows,

o for each windowed excerpt compute the periodogram estimate (i.e. the basis modulus-
squared of the Discrete Fourier Transform),

e apply the mel filterbank to the power spectra obtained, using overlapping triangular
windows, and sum the energies in each filter,

o take the logarithm of the powers of the mel frequencies,
e apply Discrete Cosine Transform on the list of mel log powers.

The MFCC are the amplitudes of the resulting spectrum (in practice the 2-13 coefficients
are kept, and the rest discarded) [23][24].

The MFCC features are one of the most popular features employed in LID systems and
consequently it was a natural choice in utilizing them for the present task as well. Figure
4 presents an example of the MFCC taken from a speech sample. The audio files were
sampled at 44.1 kHz, and divided into 0.025 seconds frames with an overlap of 60%
between frames resulting in approximately 1000 frames for a 10 seconds long audio file.
The MFCC are extracted from each individual frame resulting in roughly a 1000 x 13
feature vector per sample [25].
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Figure 4: 13 mel-frequency coefficients taken from an English speech sample plotted
over the first 100 frames the signal was divided into.

3.1.2 Shifted delta coefficients

To capture long time spectral information from successive frames (i.e. the information
speech carries in the dynamics) shifted delta cepstral (SDC) features are added as well
[9][26], they are also known as differential and acceleration coefficients, the latter being
computed using the differential coefficients. The standard delta (differential) coefficients
can be computed as follows [27]:

d(t +iP) = c(t + iP + D) — ¢(t + iP — D)

Here c(t) represents the MFCC features at time ¢ and the final feature vector is given by
the concatenation of the MFCC features with d(¢ +iP) for all 0 < i < k. The values for £,
P and D are the parameters that need to be set for the SDC.

For the current research a modified version of the SDC was used as documented in [26]:

i dle(t +iP + d) — e(t +iP — d)]

d(t+iP) =

The parameter values chosen for computing the modified SDC were k£ = 3, P = 3, and
respectively D = 3 allowing for additionally 39 feature values to the 13 long MFCC feature
vector, totalling to a roughly 1000 x 52 feature vector per audio sample. Intuitively the
chosen modified SDC values reflect the rate of change of the MFCC features locally and
in the near future. The acceleration coefficients (not considered in the current research)
are computed in a similar manner only that the delta coefficients are used instead of the
'static’ MFCC coefficients.



3.1.3 Pitch and loudness

The model considered in the current section included and fused prosodic features with the
cepstral based features. Prosodic features like pitch and intensity have proven to be very
effective in both tonal and non-tonal LID, while carrying discriminatory information when
compared to cepstral features. Previous approaches which used prosodic features for
LID included unsupervised learning pitch contour through GMM or HMM, and subsequent
fusion with other features [26]. For the current model the pitch and loudness are extracted
from the individual frames the audio signal was split into and added to the MFCC features
creating a 1000 x 15 feature vector per each speech sample.

The loudness is computed through a power calculation using a root-mean-squared oper-
ation over the small signal frame (0.025 sec). The value returned after the computation is
measured in dB (decibels) and ranges from 0 dB (maximum loudness) to -40 dB (silence)

[28].

The pitch detection or the frequency estimation of a signal frame is computed in 2 steps.
The first step is computing the Fast Fourier Transform (FFT) of the windowed signal and
the second step is using parabolic interpolation to obtain a close estimation of the true
frequency [29].

3.2 Network Design

The following section will focus on the ESN component of the system including the param-
eters used for tuning the network, details on the implementation of the readout training
and the method chosen to classify the testing samples.

The constructed networks were continuously improved through intensive tuning and test-
ing. Even if they cannot be considered the most ‘optimal’ networks in a strict sense of the
word they provide excellent results on the dataset used and they showcase the potential
of the approach which is the main goal of the current research.

3.2.1 Update equations

The update equations used are the same as mentioned in Section 2.1, for convenience
they are repeated below:

Z(n) = tanh(W™[1 : u(n)] + Wz(n — 1))
z(n) =1 —-a)x(n—1)+ ax(n)

Where W and W are the input connection matrix, and the reservoir matrix, respectively.
Both are highly sparse as recommended in the original ESN papers and initialized at the
beginning with random values from a [—0.5, 0.5] uniform distribution.

As a result of the experiments conducted the parameters that changed the performance
of the models the most were the size of the reservoir and the value of the spectral radius
for the reservoir. When analyzing different setups of the parameters it was observed that
an increase in the reservoir size contributes to an overall increase in performance and



as the complexity of the model increased by having more features a higher size for the
reservoir was beneficial. This is due to the fact that the higher the size of the input signal
u(n) is the higher the nonlinear dimensional expansion of x(n) has to be [7]. Even so
promising results have been obtained with reservoir sizes not exceeding 500 nodes.

The most optimal value found for the spectral radius across the different models used
was around 0.8 — 1.0, though through more extensive testing potentially better values
can be found. For the LID problem a higher value for the spectral radius together with a
relatively small leaking rate a value implied the need for slow dynamics of z(n) and longer
short-term memory in ESN as a consequence of the fast changes in the feature values
over time.

3.2.2 Training using Tikhonov regularization

One of the main benefits of using ESNs when compared to other RNN based models is
the readout training, which involves training only the output weights (y(n) = W°“*z(n)) as
the reservoir fulfills the echo state property.

In the ESN literature the most popular training method, though other methods to learn
linear output weights can be used, is ridge regression or Tikhonov regularization, written
in matrix form below:

Wout _ YT

targetX(XTX + 71)_1

The X matrix represents the collected reservoir activation states as the feature vectors
have been passed through the reservoir. The states are collected only after an initial
transient since the network dynamics are influenced in the beginning by the random ini-
tialization of the reservoir. As an example, for a feature vector of size 1000 x 13 the
collected activation states assuming an initial transient of 50 frames and a reservoir size
of 100 would be of size 950 x 100.

For a classification task Yj,-4: is @ collection of yq,4e¢ Vectors of size 1 x number of
classes which are 0 everywhere apart from the correct class for the respective state.
Yrarget VECtOrs are generated for each of the activation state collected in matrix X. To
exemplify if X € RY*Ne then Vi ger € RM*Nv, where N, is the number of collected
states.

The problem in practice is that N, can get very large in the order of hundreds of thousands
or even millions depending on the size of the dataset and the size of the feature vectors,
requiring heavy memory usage.

To avoid such a problem and reduce the memory cost a streamlined Tikhonov regular-
ization has been developed. The main idea is to incrementally compute the KigrgetX and
XTX matrices by storing only a relatively small number N, of the states, where N, is
significantly smaller than the total size N., but not too small to avoid decreasing the com-
putational speed (in practice N, was set to 5000). After N, states have been collected in
X € RM>*Na and matrix Yiarge: € RM*Yv has been generated during the process, partial
results are stored in temporary matrices R = R+ X"X, T =T + Y. X where R, T

target
are of sizes N, x N, and N, x N,, respectively. In the next step another IV, states are

10



collected and the process is repeated such that at the end the output connection weights
can be computed through:

WO = T(R + 1)~}

The streamlined Tikhonov regularization presented above has been successfully applied
in practice, substantially reducing memory costs with little changes in the computational
speed. It allowed parallelizing the process and testing different parameter configurations
on multiple processes without a memory bottleneck.

3.2.3 Classification

After the training period of the output weights new samples are run through the network.
Considering u‘(t) the input feature values of sample i at frame ¢, after running it through
the reservoir we obtain the output values y#(t) = W°*“z%(t) which are further collected
into an output matrix Y, = [*(1)|y*(2)| - - - [¢*(n)]*, with n being the number of frames
for the given test sample. Based on Y , the sample is classified according to the following
formula:

class(u') = argmax  count[arg max(yL(t))|Vt, 1 < t < n]
k k

Intuitively the formula works in 2 steps. The first step involves finding k, the dimension or
class for which y(¢) provides the highest value and the second step consists in counting
the number of occurrences for each k as a result of the first step over the total number of
frames. The resulting class k is the class with the highest number of occurrences.

The main benefit of this approach is that it does not require storing the output matrix Y

out?’

it only needs to update a frequency vector of the dimensions after each frame processed.

3.3 The dataset

The dataset used for the current research consists of 1200 speech samples, out of which
600 samples denoted as the training dataset are used to pick the best configuration for
each model and afterwards the full dataset is used to measure the performance [30].

The samples in the dataset are recorded from 5 different languages: English, French,
German, ltalian and Spanish, with each language being equally represented in the num-
ber of speech samples (i.e. out of the 600 samples in the training dataset each language
has 120 samples).

Each audio file is approximately 10 seconds long, in one of the 5 possible mentioned
languages involving one unknown speaker.

Different parameter configurations for the ESN models are compared using 5-fold cross
validation on the training dataset (i.e. 4/5 of the training dataset samples are used to
learn the output connection weights and 1/5 of the samples are used to test the resulting
system, the process is repeated 4 more times with the samples being permuted at each
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time). The performance of the tested configuration is averaged among the total number
of folds.

The configurations of the ESN models that perform the best on the 5-fold cross validation
are run in the next step on the full dataset and their performance is evaluated using
multiple analysis metrics.

3.4 Performance metrics

To evaluate the effectiveness and reliability of the developed models multiple performance
measures have been utilized. Their theoretical value and practical interpretation will be
briefly discussed in the current section (for more information refer to [31]):

e Class Average Accuracy = oy +pprpy. Measures class i effectiveness and it

should be close to 1,

e Class Precision = 75", positive predictive value for class i,

e Class Recall = 75", also known as true positive rate, measures the effective-

ness of identifying true positives of class i,

e Overall Average Accuracy = + Z TF R, measures the average per-

class effectiveness of a cIaSS|f|er

e Precisiony; = 1 Z TP +FP , per-class averaged precision,

e Recally = 1 Z TP L ;> per-class averaged recall, measures the effectiveness of

a classifier in |dent|fy|ng true positive class labels,

2 x Precision); » Recally,

Precisiony; + Recally _
and Recally;, and it is desirable to have it as close to 1 as possible.

e F1-scorey; = is the harmonic mean between Precision,;

L represents the number of classes and T'P;, T N;, F'P;, F'N; are the true positives, true
negatives, false positives and false negatives, respectively, for class i. The index M
stands for macro-averaging which provides equal weight to every class.

4 Experimental results

4.1 1 model (MFCC)

o 5-fold cross validation on the training dataset consisting of 120 samples for
each language

The configuration picked as a representative for the current model was chosen based
on the Recally; score also known as true-positive rate. The main parameters for the
configuration include the leaking rate a = 0.2, spectral radius p(W) = 1.0, regularization
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English | French | ltalian | German | Spanish
Average Accuracy | 0.97 1.0 0.99 0.97 0.99
Recall 0.86 0.99 0.96 0.98 1.0
Precision 0.99 0.99 1.0 0.88 0.95

Table 1: Performance metrics on individual classes averaged over all folds

Overall Avg. Accuracy | Recally; | Precision,; | F1-scorey,
15t model 0.98 0.96 0.96 0.96

Table 2: Performance metrics on the model averaged over all folds
parameter v = 0.7, and the reservoir size N, = 250.
¢ 2-fold cross validation on the full dataset

In a 2-fold cross validation the dataset is equally split, such that in the current task each
class (language) has 120 samples used for training and 120 samples used for testing. In
each of the 2 folds the 2 sets are swapped (i.e. the set of samples used for testing in the
first fold is the training set in the second fold).

With the model having the parameter settings listed above the following results were
obtained:

English | French | ltalian | German | Spanish
Average Accuracy | 0.97 0.94 0.95 0.94 0.97
Recall 0.86 0.99 0.83 0.79 0.94
Precision 0.97 0.77 0.92 0.89 0.90

Table 3: Performance metrics on individual classes averaged over the 2 folds

Overall Avg. Accuracy | Recall,; | Precision,, | F1-scorey,
15t model 0.95 0.88 0.89 0.89

Table 4: Performance metrics on the model averaged over the 2 folds

4.2 2" model (MFCC + SDC)

¢ 5-fold cross validation on the training dataset consisting of 120 samples for
each language

English | French | ltalian | German | Spanish
Average Accuracy | 0.99 1.0 1.0 0.99 1.0
Recall 0.96 1.0 1.0 1.0 1.0
Precision 1.0 1.0 1.0 0.96 1.0

Table 5: Performance metrics on individual classes averaged over all folds
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Overall Avg. Accuracy | Recally; | Precision,; | F1-scorey,
24 model 1.0 0.99 0.99 0.99

Table 6: Performance metrics on the model averaged over all folds

The configuration picked as a representative for the 2"¢ model was chosen, as in the
previous model, based on the Recally; score. It is worth mentioning that this model
is more complex than the 1%* model having a larger feature space and consequently a
larger reservoir size was required for better performance.

The main parameters for this configuration include the leaking rate a = 0.1, spectral radius
p(W) = 0.9, regularization parameter v = 0.1, and the reservoir size N, = 400.

As described in Section 3.2.1 the low leaking rate together with a high spectral radius
value contributes to a longer short term memory of the input, which is needed due to the
fast dynamics in the feature vectors.

o 2-fold cross validation on the full dataset

With the model having the parameter settings listed above the following results were
obtained:

English | French | ltalian | German | Spanish
Average Accuracy 1.0 0.98 0.98 0.99 1.0
Recall 0.99 1.0 0.92 0.96 1.0
Precision 1.0 0.90 1.0 1.0 0.98

Table 7: Performance metrics on individual classes averaged over the 2 folds

Overall Avg. Accuracy | Recally; | Precision,; | F1-scorey,
2" model 0.99 0.97 0.98 0.97

Table 8: Performance metrics on the model averaged over the 2 folds

4.3 3" model (MFCC + pitch + loudness)

e 5-fold cross validation on the training dataset consisting of 120 samples for
each language

English | French | ltalian | German | Spanish
Average Accuracy | 0.99 1.0 1.0 0.99 1.0
Recall 0.93 0.99 1.0 0.99 1.0
Precision 1.0 1.0 1.0 0.94 0.98

Table 9: Performance metrics on individual classes averaged over all folds

The main parameters for this configuration include the leaking rate a = 0.2, spectral radius
p(W) = 1.0, regularization parameter ~ = 0.3, and the reservoir size N, = 300.
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Overall Avg. Accuracy

Recall,,

Precision;,

F1-score,,

377 model

0.99

0.98

0.99

0.98

Table 10: Performance metrics on the model averaged over all folds

o 2-fold cross validation on the full dataset

With the model having the parameter settings listed above the following results were

obtained:

English | French | ltalian | German | Spanish
Average Accuracy | 0.99 0.96 0.98 0.97 0.99
Recall 0.94 0.99 0.91 0.88 0.98
Precision 0.99 0.82 0.99 0.97 0.95

Table 11: Performance metrics on individual classes averaged over the 2 folds

Overall Avg. Accuracy

Recall,,

Precision,,

F1-score,,

377 model

0.98

0.94

0.94

0.94

Table 12: Performance metrics on the model averaged over the 2 folds

4.4 Performance summary

15t model | 2"¢ model | 3”7 model
Overall Avg. Accuracy 0.98 1.0 0.99
Recally, 0.96 0.99 0.98
Precision;, 0.96 0.99 0.99
F1-scorey, 0.96 0.99 0.98

Table 13: A table summarizing the performance of the 3 models on the 5-fold cross
validation for the training dataset

15t model | 2"¢ model | 3"% model
Overall Avg. Accuracy 0.95 0.99 0.98
Recally, 0.88 0.97 0.94
Precision), 0.89 0.98 0.94
F1-scorey, 0.89 0.97 0.94

validation for the full dataset

Through the conducted experiments, it was observed that the 2"¢ model provided supe-

Table 14: A table summarizing the performance of the 3 models on the 2-fold cross

rior results when compared to the other investigated models.

The models were tested on the same configurations and while the experiments are not
exhaustive and there is room for further parameter tuning, it was clear that the 2"¢ model
outperformed the other models, with the third one improving considerably on the basic

setup.
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5 Conclusions

This section will present the conclusions of the current guided research thesis and will
restate the main accomplishments achieved.

The automatic language identification problem has been extensively researched over the
last few decades, and successful approaches were proposed and continue to be devel-
oped as new technologies are created.

The properties of Echo State Networks recommend them as models for temporal se-
guences such as speech sequences, and based on such properties the main purpose of
this research was to create an ESN based classifier for the LID problem.

In the examples found in the literature [21][22] ESNs have provided good results in com-
plex classification tasks, and together with the results of the current research their poten-
tial in classification problems is showcased even more.

Many features meant to contain representative information in speech sequences have
been proposed, and the literature describing such features and methods employing them
is vast. The current research is focused on cepstral based features (i.e. MFCC), shifted
delta coefficients obtained from MFCC and prosodic features (i.e. pitch and loudness).
These features were successfully utilized in developing efficient and robust models achiev-
ing significant results, as presented in detail in Section 4.

6 Further investigation

The following section will conclude the present document and will describe a few ideas
worth pursuing for future investigation.

A state-of-the-art feature extraction method, highly popular in current speech recogni-
tion tasks, relies on computing the i-vectors (or total variability space approach) acoustic
based features [20]. In the i-vector representation approach a sequence of frames for
a given utterance is mapped to a low-dimensional feature vector, referred to as total
variability space, based on the factor analysis method. The main idea behind factor anal-
ysis is that it assumes variability in speaker and channel components, whereas other
approaches adapt to speaker-specific characteristics of speech, channel and other sub-
spaces. Driven by the success of Joint Factor Analysis (JFA), different new approaches
have been proposed for LID [18][19]. One of the most recent ones involves using Deep
Neural Networks as backend classifier and i-vectors for the frontend feature extraction
[17]. An objective for future research could be to implement such features in the ESN
classifier toolbox, after getting more familiar with the theory behind them and their char-
acteristics.

Another promising contribution could be testing a different classification criterion than the
one used in the current research. For example instead of choosing the dimension by
counting the most frequent predominant dimension in each frame t the approach stated
in [7] which involves picking the resulting class based on the maximal sum computed for
each dimension could be used.
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Additional suggestions consist of:

e comparing the developed classifier models’ performance against other LID clas-
sifier results to analyse how the ESN models fair with respect to established LID
solutions,

e data preprocessing which can include background noise reduction or amplification,
or detecting and removing long silence frames which do not provide meaningful
information.
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